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ABSTRACT
The conventional software running on network devices, such
as switches and routers, is typically vendor-supplied, pro-
prietary and closed-source; as a result, it tends to contain
extraneous features that a single operator will not most likely
fully utilize. Furthermore, cloud-scale data center networks
often times have software and operational requirements that
may not be well addressed by the switch vendors.

In this paper, we present our ongoing experiences on over-
coming the complexity and scaling issues that we face when
designing, developing, deploying and operating an in-house
software built to manage and support a set of features re-
quired for data center switches of a large scale Internet con-
tent provider. We present FBOSS, our own data center switch
software, that is designed with the basis on our switch-as-
a-server and deploy-early-and-iterate principles. We treat
software running on data center switches as any other soft-
ware services that run on a commodity server. We also build
and deploy only a minimal number of features and iterate on
it. These principles allow us to rapidly iterate, test, deploy
and manage FBOSS at scale. Over the last five years, our
experiences show that FBOSS’s design principles allow us
to quickly build a stable and scalable network. As evidence,
we have successfully grown the number of FBOSS instances
running in our data center by over 30x over a two year period.
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1 INTRODUCTION
The world’s desire to produce, consume, and distribute on-

line content is increasing at an unprecedented rate. Commen-
surate with this growth are equally unprecedented technical
challenges in scaling the underlying networks. Large Internet
content providers are forced to innovate upon all aspects of
their technology stack, including hardware, kernel, compiler,
and various distributed systems building blocks. A driving
factor is that, at scale even a relatively modest efficiency
improvement can have large effects. For us, our data center
networks power a cloud-scale Internet content provider with
billions of users, interconnecting hundreds of thousands of
servers. Thus, it is natural and necessary to innovate on the
software that runs on switches. 1

Conventional switches typically come with software writ-
ten by vendors. The software includes drivers for managing
dedicated packet forwarding hardware (e.g., ASICs, FPGAs,
or NPUs), routing protocols (e.g., BGP, OSPF, STP, MLAG),
monitoring and debugging features (e.g., LLDP, BFD, OAM),
configuration interfaces (e.g., conventional CLI, SNMP, Net-
Conf, OpenConfig), and a long tail of other features needed
to run a modern switch. Implicit in the vendor model is the
assumption that networking requirements are correlated be-
tween customers. In other words, vendors are successful be-
cause they can create a small number of products and reuse
them across many customers. However our network size and
the rate of growth of the network (Figure 1) are unlike most
other data center networks. Thus, they imply that our require-
ments are quite different from most customers.

1We use “switch” for general packet switching devices such as switches and
routers. Our data center networks are fully Layer 3 routed similar to what is
described in [36].
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Figure 1: Growth in the number of switches in our data
center over two year period as measured by number of
total FBOSS deployments.

One of the main technical challenges in running large net-
works is managing complexity of excess networking features.
Vendors supply common software intended for their entire
customer base, thus their software includes the union of all
features requested by all customers over the lifetime of the
product. However, more features lead to more code and more
code interactions, which ultimately lead to increased bugs,
security holes, operational complexity, and downtime. To
mitigate these issues, many data centers are designed for sim-
plicity and only use a carefully selected subset of networking
features. For example, Microsoft’s SONiC focuses on build-
ing a “lean stack” in switches [33].

Another of our network scaling challenges is enabling a
high-rate of innovation while maintaining network stability.
It is important to be able to test and deploy new ideas at scale
in a timely manner. However, inherent in the vendor-supplied
software model is that changes and features are prioritized by
how well they correlate across all of their customers. A com-
mon example we cite is IPv6 forwarding, which was imple-
mented by one of our vendors very quickly due to widespread
customer demand. However, an important feature to our oper-
ational workflow was fine-grained monitoring of IPv6, which
we quickly implemented for our own operational needs. Had
we left this feature to the demands of the customer market
and to be implemented by the vendors, we would not have
had this feature until over four years later, which was when
the feature actually arrived to the market.

In recent years, the practice of building network switch
components has become more open. First, network vendors
emerged that do not build their own packet forwarding chips.
Instead they rely on third-party silicon vendors, commonly
known as “merchant silicons”. Then, merchant silicon ven-
dors along with box/chassis manufacturers have emerged that
create a new, disaggregated ecosystem where networking
hardware can be purchased without any software. As a re-
sult, it is now possible for end-customers to build a complete
custom switch software stack from scratch.

Thanks to this trend, we started an experiment of building
our in-house designed switch software five years ago. Our
server fleet already runs thousands of different software ser-
vices. We wanted to see if we can run switch software in a
similar way we run software services. This model is quite
different from how conventional networking software is man-
aged. Table 1 summarizes the differences between the two
high-level approaches using a popular analogy [17].

The result is Facebook Open Switching System (FBOSS),
which is now powering a significant portion of our data center
infrastructure. In this paper, we report on five years of expe-
riences on building, deploying and managing FBOSS. The
main goals of this paper are:

(1) Provide context about the internal workings of the soft-
ware running on switches, including challenges, design trade-
offs, and opportunities for improvement, both in the abstract
for all network switch software and our specific pragmatic
design decisions.

(2) Describe the design, automated tooling for deployment
monitoring, and remediation methods of FBOSS.

(3) Provide experiences and illustrative problems encoun-
tered on managing a cloud-scale data center switch software.

(4) Encourage new research in the more accessible/open
field of switch software and provide a vehicle, an open source
version of FBOSS [4], for existing network research to be
evaluated on real hardware.

The rest of the paper closely follows the structure of Ta-
ble 1 and is structured as follows: We first provide a couple of
our design principles that guide FBOSS’s development and
deployment (Section 2). Then, we briefly describe major hard-
ware components that most data center switch software needs
to manage (Section 3) and summarize the specific design
decisions made in our system (Section 4). We then describe
the corresponding deployment and management goals and
lessons (Section 5, Section 6). We describe three operational
challenges (Section 7) and then discuss how we have success-
fully overcome them. We further discuss various topics that
led to our final design (Section 8) and provide a road map for
future work (Section 9).

2 DESIGN PRINCIPLES
We designed FBOSS with two high-level design princi-

ples: (1) Deploy and evolve the software on our switches the
same as we do our servers (Switch-as-a-Server). (2) Use early
deployment and fast iteration to force ourselves to have a
minimally complex network that only uses features that are
strictly needed (Deploy-Early-and-Iterate). These principles
have been echoed in the industry - a few other customized
switch software efforts like Microsoft ACS [8]/SONiC [33]
is based on similar motivation. However, one thing to note is
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Switch Software General Software
Hardware (S3) Closed, custom embedded systems. Limited

CPU/Mem resources.
Open, general-purpose servers. Spare and fungi-
ble CPU/Mem resources

Release Cycle (S5) Planned releases every 6-12 months. Continuous deployment.
Testing (S5) Manual testing, slow production roll out. Continuous integration in production.
Resiliency Goals (S5) High device-level availability with target of

99.999% device-level uptime.
High system-level availability with redundant
service instances.

Upgrades (S6) Scheduled downtime, manual update process. Uninterrupted service, automated deployment.
Configuration (S6) Decentralized and manually managed. Custom

backup solutions.
Centrally controlled, automatically generated
and distributed. Version controlled backups.

Monitoring (S6) Custom scripting on top of SNMP counters. Rich ecosystem of data collection, analytics and
monitoring software libraries and tools.

Table 1: Comparison of development and operation patterns between conventional switch software and general software
services, based on popular analogy [17].

that our design principles are specific to our own infrastruc-
ture. Data center network at Facebook has multiple internal
components, such as Robotron [48],FbNet [46], Scuba [15]
and Gorilla [42], that are meticulously built to work with one
another, and FBOSS is no different. Thus, our design has our
specific goal of easing the integration of FBOSS into our ex-
isting infrastructure, which ultimately means that it may not
be generalized for any data center. Given this, we specifically
focus on describing the effects of these design principle in
terms of our software architecture, deployment, monitoring,
and management.

2.1 Switch-as-a-Server
A motivation behind this principle comes from our experi-

ences in building large scale software services. Even though
many of the same technical and scaling challenges apply
equally to switch software as to general distributed software
systems, historically, they have have been addressed quite
differently. For us, the general software model has been more
successful in terms of reliability, agility, and operational sim-
plicity. We deploy thousands of software services that are not
feature-complete or bug-free. However, we carefully monitor
our services and once any abnormality is found, we quickly
make a fix, deploy the change. We found this practice to be
highly successful in building and scaling our services.

For example, database software is an important part of
our business. Rather than using a closed, proprietary vendor-
provided solution that includes unnecessary features, we
started an open source distributed database project and modi-
fied it heavily for internal use. Given that we have full access
to the code, we can precisely customize the software for the
desired feature set and thereby reduce complexity. Also, we
make daily modifications to the code and, using the industry
practices of continuous integration and staged deployment,

are able to rapidly test and evaluate the changes in produc-
tion. In addition, we run our databases on commodity servers,
rather than running them on custom hardware, so that both
the software and the hardware can be easily controlled and
debugged. Lastly, since the code is open source, we make
our changes available back to the world and benefit from
discussions and bug fixes produced by external contributors.

Our experiences with general software services showed
that this principle is largely successful in terms of scalability,
code reuse, and deployment. Therefore, we designed FBOSS
based on the same principle. However, since data center net-
works have different operational requirements than a general
software service, there are a few caveats to naively adopting
this principle that are mentioned in Section 8.

2.2 Deploy-Early-and-Iterate
Our initial production deployments were intentionally lack-

ing in features. Bucking conventional network engineering
wisdom, we went into production without implementing a
long list of “must have” features, including control plane
policing, ARP/NDP expiration, IP fragmentation/reassembly,
or Spanning Tree Protocol (STP). Instead of implementing
these features, we prioritized on building the infrastructure
and tooling to efficiently and frequently update the switch
software, e.g., the warm boot feature (Section 7.1).

Keeping with our motivation to evolve the network quickly
and reduce complexity, we hypothesized that we could dy-
namically derive the actual minimal network requirements by
iteratively deploying switch software into production, observ-
ing what breaks, and quickly rolling out the fixes. By starting
small and relying on application-level fault tolerance, a small
initial team of developers were able to go from nothing to
code running in production in an order of magnitude fewer
person-years than in typical switch software development.
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Figure 2: A typical data center switch architecture.
Perhaps more importantly, using this principle, we were

able to derive and build the simplest possible network for our
environment and have a positive impact on the production
network sooner. For example, when we discovered that lack
of control plane policing was causing BGP session time-outs,
we quickly implemented and deployed it to fix the problem.
By having positive impact to the production network early,
we were able to make a convincing case for additional engi-
neers and with more help. To date, we still do not implement
IP fragmentation/reassembly, STP, or a long list of widely
believed “must have” features.

3 HARDWARE PLATFORM
To provide FBOSS’s design context, we first review what

typical switch hardware contains. Some examples are a switch
application-specific integrated circuit (ASIC), a port subsys-
tem, a Physical Layer subsystem (PHY), a CPU board, com-
plex programmable logic devices, and event handlers. The
internals of a typical data center switch are shown in Fig-
ure 2 [24].

3.1 Components
Switch ASIC. Switch ASIC is the important hardware

component on a switch. It is a specialized integrated circuit
for fast packet processing, capable of switching packets up
to 12.8 terabits per second [49]. Switches can augment the
switch ASIC with other processing units, such as FPGAs [53]
or x86 CPUs, at a far lower performance [52]. A switch ASIC
has multiple components: memory, typically either CAM,
TCAM or SRAM [19], that stores information that needs to
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Figure 3: Average CPU utilization of FBOSS on across
various type of switches in one of Facebook’s data cen-
ters.
be quickly accessed by the ASIC; a parse pipeline, consisting
of a parser and a deparser, which locates, extracts, saves
the interesting data from the packet, and rebuilds the packet
before egressing it [19]; and match-action units, which specify
how the ASIC should process the packets based on the data
inside the packet, configured packet processing logic and the
data inside the ASIC memory.

PHY. The PHY is responsible for connecting the link-layer
device, such as the ASIC, to the physical medium, such as an
optical fiber, and translating analog signals from the link to
digital Ethernet frames. In certain switch designs, PHY can be
built within the ASIC. At high-speeds, electrical signal inter-
ference is so significant that it causes packet corruption inside
a switch. Therefore, complex noise reduction techniques, such
as PHY tuning [43], are needed. PHY tuning controls various
parameters such as preemphasis, variable power settings, or
the type of Forward Error Correction algorithm to use.

Port Subsystem. The port subsystem is responsible for
reading port configurations, detecting the type of ports in-
stalled, initializing the ports, and providing interfaces for the
ports to interact with the PHY. Data center switches house
multiple Quad Small Form-factor Pluggable (QSFP) ports.
A QSFP port is a compact, hot-pluggable transceiver used
to interface switch hardware to a cable, enabling data rates
up to 100Gb/s. The type and the number of QSFP ports are
determined by the switch specifications and the ASIC.

FBOSS interacts with the port subsystem by assigning
dynamic lane mapping and adapting to port change events.
Dynamic lane mapping refers to mapping multiple lanes in
each of the QSFPs to appropriate port virtual IDs. This allows
changing of port configurations without having to restart the
switch. FBOSS monitors the health of the ports and once any
abnormality is detected, FBOSS performs remediation steps,
such as reviving the port or rerouting the traffic to a live port.

CPU Board. There exists a CPU board within a switch that
runs a microserver [39]. A CPU board closely resembles a
commodity server, containing a commodity x86 CPU, RAM
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and a storage medium. In addition to these standard parts,
a CPU board has a PCI-E interconnect to the switch ASIC
that enables quick driver calls to the ASIC. The presence
of a x86 CPU enables installation of commodity Linux to
provide general OS functionalities. CPUs within switches
are conventionally underpowered compared to a server-grade
CPUs. However, FBOSS is designed under the assumption
that the CPUs in the switches are as powerful as server-grade
CPUs, so that the switch can run as much required server
services as possible. Fortunately, we designed and built our
data center switches in-house, giving us flexibility to choose
our own CPUs that fits within our design constraints. For
example, our Wedge 100 switch houses an Quad Core Intel
E3800 CPU. We over-provision the CPU, so that the switch
CPU runs under 40% utilization to account for any bursty
events from shutting down the switch. Such design choice can
be seen in various types of switches that we deploy, as seen
in Figure 3. The size allocated for the CPU board limited us
from including an even powerful CPU [24].

Miscellaneous Board Managers. A switch offloads mis-
cellaneous functions from the CPU and the ASIC to various
components to improve overall system performance. Two
examples of such components are Complex Programmable
Logic Device (CPLD) and the Baseboard Management Con-
troller (BMC). The CPLDs are responsible for status monitor-
ing, LED control, fan control and managing front panel ports.
The BMC is a specialized system-on-chip that has its own
CPU, memory, storage, and interfaces to connect to sensors
and CPLDs. BMC manages power supplies and fans. It also
provides system management functions such as remote power
control, serial over LAN, out-of-band monitoring and error
logging, and a pre-OS environment for users to install an
OS onto the microsever. The BMC is controlled by custom
software such as OpenBMC [25].

The miscellaneous board managers introduce additional
complexities for FBOSS. For example, FBOSS retrieves
QSFP control signals from the CPLDs, a process that requires
complex interactions with the CPLD drivers.

3.2 Event Handlers
Event handlers enable the switch to notify any external en-

tities of its internal state changes. The mechanics of a switch
event handler are very similar to any other hardware-based
event handlers, thus the handlers can be handled in both syn-
chronous or asynchronous fashion. We discuss two switch
specific event handlers: the link event handler, and the slow
path packet handler.

Link Event Handler. The link event handler notifies the
ASIC and FBOSS of any events that occur in the QSFP ports
or the port subsystem. Such events include link on and off
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Figure 4: Growth of FBOSS open source project.
events and change in link configurations. The link status han-
dler is usually implemented with a busy polling method where
the switch software has an active thread that constantly moni-
tors the PHY for link status and then calls the user-supplied
callbacks when changes are detected. FBOSS provides a call-
back to the link event handler, and syncs its local view of the
link states when the callback is activated.

Slow Path Packet Handler. Most switches allow packets
to egress to a designated CPU port, the slow path. Similar
to the link status handler, the slow packet handler constantly
polls the CPU port. Once a packet is received at a CPU port,
the slow path packet handler notifies the switch software of
the captured packet and activates the supplied callback. The
callback is supplied with various information, which may
include the actual packet that is captured. This allows the
slow path packet handler to greatly extend a switch’s feature
set, as it enables custom packet processing without having
to change the data plane’s functionality. For example, one
can sample a subset of the packets for in-band monitoring or
modify the packets to include custom information. However,
as indicated by its name, the slow path packet handler is too
slow to perform custom packet processing at line rate. Thus it
is only suitable for use cases that involve using only a small
sample of the packets that the switch receives.

4 FBOSS
To manage the switches as described in Section 3, we devel-

oped FBOSS, vendor-agnostic switch software that can run on
a standard Linux distribution. FBOSS is currently deployed
to both ToR and aggregation switches in our production data
centers. FBOSS’s code base is publicly available as an open
source project and it is supported by a growing community.
As of January 2018, a total of 91 authors have contributed to
the project and the codebase now spans 609 files and 115,898
lines of code. To give a scope of how much lines of code a fea-
ture may take to implement, implementing link aggregation
in FBOSS required 5,932 lines of newly added code. Note
that this can be highly variable depending on the feature of
interest, and some features may not be easily divisible from
one another. Figure 4 shows the growth of the open source
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project since its inception. The big jump in the size of the
codebase that occurred in September of 2017 is a result of
adding a large number of hardcoded parameters for FBOSS
to support a particular vendor NIC.

FBOSS is responsible for managing the switch ASIC and
providing a higher level remote API that translates down to
specific ASIC SDK methods. The external processes include
management, control, routing, configuration, and monitoring
processes. Figure 5 illustrates FBOSS, other software pro-
cesses and hardware components in a switch. Note that in our
production deployment, FBOSS share the same Linux envi-
ronment (e.g., OS version, packaging system) as our server
fleet, so that we can utilize the same system tools and libraries
on both servers and switches.

4.1 Architecture
FBOSS consists of multiple interconnected components

that we categorize as follows: Switch Software Development
Kit (SDK), HwSwitch, Hardware abstraction layer, SwSwitch,
State observers, local config generator, a Thrift [2] manage-
ment interface and QSFP service. FBOSS agent is the main
process that runs most of FBOSS’s functionalities. The switch
SDK is bundled and compiled with the FBOSS agent, but is
provided externally by the switch ASIC vendor. All of the
other components besides the QSFP service, which runs as
its own independent process, reside inside the FBOSS agent.
We discuss each component in detail, except the local config
generator, which we will discuss in Section 6.

Switch SDK. A switch SDK is ASIC vendor-provided soft-
ware that exposes APIs for interacting with low-level ASIC
functions. These APIs include ASIC initialization, installing
forwarding table rules, and listening to event handlers.

HwSwitch. The HwSwitch represents an abstraction of
the switch hardware. The interfaces of HwSwitch provide
generic abstractions for configuring switch ports, sending and
receiving packets to these ports, and registering callbacks for
state changes on the ports and packet input/output events that
occur on these ports. Aside from the generic abstractions,
ASIC specific implementations are pushed to the hardware
abstraction layer, allowing switch-agnostic interaction with
the switch hardware. While not a perfect abstraction, FBOSS
has been ported to two ASIC families and more ports are in
progress. An example of a HwSwitch implementation can be
found here [14].

Hardware Abstraction Layer. FBOSS allows users to
easily add implementation that supports a specific ASIC by
extending the HwSwitch interface. This also allows easy sup-
port for multiple ASICs without making changes to the main
FBOSS code base. The custom implementation must sup-
port the minimal set of functionalities that are specified in
HwSwitch interface. However, given that HwSwitch only
specifies a small number of features, FBOSS allows custom
implementation to include additional features. For example,
open-source version of FBOSS implements custom features
such as specifying link aggregation, adding ASIC status mon-
itor, and configuring ECMP.

SwSwitch. The SwSwitch provides the hardware-
independent logic for switching and routing packets, and in-
terfaces with the HwSwitch to transfer the commands down to
the switch ASIC. Some example of the features that SwSwitch
provides are, interfaces for L2 and L3 tables, ACL entries,
and state management.

State Observers. SwSwitch make it possible to implement
low-level control protocols such as ARP, NDP, LACP, and
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1 struct L2EntryThrift {
2 1: string mac,
3 2: i32 port,
4 3: i32 vlanID,
5 }
6 list<L2EntryThrift> getL2Table()
7 throws (1: error.FBossBaseError error)

Figure 7: Example of Thrift interface definition to re-
trieve L2 entries from the switch.
LLDP, by keeping protocols apprised of state changes2. The
protocols are notified of state changes via a mechanism called
state observation. Specifically, any object at the time of its
initialization may register itself as a State Observer. By doing
so, every future state change invokes a callback provided by
the object. The callback provides the state change in question,
allowing the object to react accordingly. For example, NDP
registers itself as a State Observer so that it may react to port
change events. In this way, the state observation mechanism
allows protocol implementations to be decoupled from issues
pertaining to state management.

Thrift Management Interface. We run our networks in a
split control configuration. Each FBOSS instance contains
a local control plane, running protocols such as BGP or
OpenR [13], on a microserver that communicates with a
centralized network management system through a Thrift
management interface. The types of messages that are sent
between them are as in the form seen in Figure 7. The full
open-source specification of the FBOSS Thrift interface is
also available [5]. Given that the interfaces can be modified
to fit our needs, Thrift provides us with a simple and flexible
way to manage and operate the network, leading to increased
stability and high availability. We discuss the details of the
interactions between the Thrift management interface and the
centralized network management system in Section 6.

QSFP Service. The QSFP service manages a set of QSFP
ports. This service detects QSFP insertion or removal, reads
QSFP product information (e.g., manufacturer), controls
QSFP hardware function (i.e., change power configuration),
and monitors the QSFPs. FBOSS initially had the QSFP ser-
vice within the FBOSS agent. However, as the service con-
tinues to evolve, we must restart the FBOSS agent and the
switch to apply the changes. Thus, we separated the QSFP
service into a separate process to improve FBOSS’s modular-
ity and reliability. As the result, FBOSS agent is more reliable
as any restarts or bugs in QSFP service do not affect the agent
directly. However, since QSFP service is a separate process,
it needs separate tools for packaging, deployment, and moni-
toring. Also, careful process synchronization between QSFP
service and FBOSS agent is now required.

2The other functions include control packets transmission and reception and
programming of switch ASIC and hardware.
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Figure 8: Illustration of FBOSS’s switch state update
through copy-on-write tree mechanism.
4.2 State Management

FBOSS’s software state management mechanism is de-
signed for high concurrency, fast reads, and easy and safe
updates. The state is modeled as a versioned copy-on-write
tree [37]. The root of the tree is the main switch state class,
and each child of the root represents a different category of the
switch state, such as ports or VLAN entries. When an update
happens to one branch of the tree, every node in the branch
all the way to the root is copied and updated if necessary.
Figure 8 illustrates a switch state update process invoked by
an update on an VLAN ARP table entry. We can see that only
the nodes and the links starting from the modified ARP table
up to the root are recreated. While the creation of the new tree
occurs, the FBOSS agent still interacts with the prior states
without needing to capture any locks on the state. Once the
copy-on-write process completes for the entire tree, FBOSS
reads from the new switch state.

There are multiple benefits to this model. First, it allows
for easy concurrency, as there are no read locks. Reads can
still continue to happen while a new state is created, and
the states are only created or destroyed and never modified.
Secondly, versioning of states is much simpler. This allows
easier debugging, logging, and validation of each state and
its transitions. Lastly, since we log all the state transitions, it
is possible to perform a restart and then restore the state to
its pre-restart form. There also are some disadvantages to this
model. Since every state change results in a new switch state
object, the update process requires more processing. Secondly,
implementation of switch states is more complex than simply
obtaining locks and updating a single object.

Hardware Specific State. The hardware states are the
states that are kept inside the ASIC itself. Whenever a hard-
ware state needs to be updated in software, the software must
call the switch SDK to retrieve the new states. The FBOSS
HwSwitch obtains both read and write locks on the corre-
sponding parts of the hardware state until the update com-
pletes. The choice of lock based state updates may differ
based on the SDK implementation.
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Figure 9: Culprits of switch outages over a month.
5 TESTING AND DEPLOYMENT

Switch software is conventionally developed and released
by switch vendors and is closed and proprietary. Therefore, a
new release to the switch software can take months, in lengthy
development and manual QA test cycles. In addition, given
that software update cycles are infrequent, an update usually
contains a large number of changes that can introduce new
bugs that did not exist previously. In contrast, typical large
scale software deployment processes are automated, fast, and
contain a smaller set of changes per update. Furthermore,
feature deployments are coupled with automated and incre-
mental testing mechanisms to quickly check and fix bugs. Our
outage records (Figure 9) show that about 60% of the switch
outages are caused by faulty software. This is similar to the
known rate of software failures in data center devices, which
is around 51% [27]. To minimize the occurrences and impact
of these outages, FBOSS adopts agile, reliable and scalable
large scale software development and testing schemes.

Instead of using existing automatic software deployment
framework like Chef [3] or Jenkins [6], FBOSS employs
its own deployment software called fbossdeploy. One of the
main reason for developing our own deployment software is
to allow for a tighter feedback loop with existing external
monitors. We have several existing external monitors that
continuously check the health of the network. These monitors
check for attributes such as link failures, slow BGP conver-
gence times, network reachability and more. While existing
deployment frameworks that are built for deploying generic
software are good at preventing propagation of software re-
lated bugs, such as deadlocks or memory leaks, they are not
built to detect and prevent network-wide failures, as these
failures may be hard to detect from a single node. There-
fore, fbossdeploy is built to react quickly to the network-wide
failures, such as reachability failures, that may occur during
deployment.

The FBOSS deployment process is very similar to other
continuous deployment processes [22] and is split into three
distinct parts: continuous canary, daily canary and staged
deployment. Each of these parts serves a specific purpose to
ensure a reliable deployment. We currently operate roughly
at a monthly deployment cycle, which includes both canaries
and staged deployment, to ensure high operational stability.

Continuous Canary. The continuous canary is a process
that automatically deploys all newly committed code in the
FBOSS repository to a small number of switches that are
running in production, around 1-2 switches per each type of
switch, and monitors the health of the switch and the adjacent
switches for any failures. Once a failure is detected, contin-
uous canary will immediately revert the latest deployment
and restore the last stable version of the code. Continuous
canary is able to quickly catch errors related to switch initial-
ization, such as issues with warm boot, configuration errors
and unpredictable race conditions.

Daily Canary. The daily canary is a process that follows
continuous canary to test the new commit at a longer timescale
with more switches. Daily canary runs once a day and deploys
the latest commit that has passed the continuous canary. Daily
canary deploys the commit to around 10 to 20 switches per
each type of the switch. Daily canary runs throughout the day
to capture bugs that slowly surface over time, such as memory
leaks or performance regressions in critical threads. This is
the final phase before a network-wide deployment.

Staged Deployment. Once daily canary completes, a hu-
man operator intervenes to push the latest code to all of the
switches in production. This is the only step of the entire
deployment process that involves an human operator and
roughly takes about a day to complete entirely. The operator
runs a deployment script with the appropriate parameters to
slowly push the latest code into the subset of the switches at
a time. Once the number of failed switches exceed a preset
threshold, usually around 0.5% of the entire switch fleet, the
deployment script stops and asks the operator to investigate
the issues and take appropriate actions. The reasons for keep-
ing the final step manual are as follows: First, a single server
is fast enough to deploy the code to all of the switches in the
data center, meaning that the deployment process is not bottle-
necked by one machine deploying the code. Secondly, it gives
fine grained monitoring over the unpredicted bugs that may
not be caught by the existing monitors. For example, we fixed
unpredicted and persistent reachability losses, such as inad-
vertently changing interface IP or port speed configurations
and transient outages like as port flaps, that we found during
staged deployment. Lastly, we are still improving our testing,
monitoring and deployment system. Thus, once the test cover-
age and automated remediation is within a comfortable range,
we plan automate the last step as well.
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6 MANAGEMENT

In this section, we present how FBOSS interacts with
management system and discuss the advantages of FBOSS’s
design from a network management perspective. Figure 10
shows a high-level overview of the interactions.

6.1 Configurations
FBOSS is designed to be used in a highly controlled data

center network with a central network manager. This greatly
simplifies the process of generation and deployment of net-
work configurations across large number of switches.

Configuration Design. The configuration of network de-
vices is highly standardized in data center environments.
Given a specific topology, each device is automatically con-
figured by using templates and auto-generated configuration
data. For example, the IP address configurations for a switch
is determined by the type of the switch (e.g., ToR or aggrega-
tion), and its upstream/downstream neighbors in the cluster.

Configuration Generation and Deployment. The config-
uration data is generated by our network management system
called Robotron [48] and is distributed to each switch. The
local config generator in FBOSS agent then consumes the
configuration data and creates an active config file. If any
modification is made to the data file, a new active config file
is generated and the old configuration is stored as a staged
config file. There are multiple advantages to this configuration
process. First, it disallows multiple entities from modifying

the configuration concurrently, which limits inconsistencies
in the configuration. Secondly, it makes the configuration
reproducible and deterministic, since the configurations are
versioned and FBOSS agent always reads the latest configura-
tion upon restarts. And lastly, it avoids manual configuration
errors. On the other hand, there are also disadvantages to our
fully automated configuration system - it lacks a complex
human interactive CLI, which makes manual debugging diffi-
cult; also, there is no support for incremental configuration
changes, which makes each configuration change require a
restart of the FBOSS agent.

6.2 Draining
Draining is the process safely removing an aggregation

switch from its service. ToR switches are generally not
drained, unless all of the services under the ToR switch are
drained as well. Similarly, undraining is the process of restor-
ing the switch’s previous configuration and bringing it back
into service. Due to frequent feature updates and deployments
performed on a switch, draining and undraining a switch is
one of the major operational tasks that is performed frequently.
However, draining is conventionally a difficult operational
task, due to tight timing requirements and simultaneous con-
figuration changes across multiple software components on
the switch [47]. In comparison, FBOSS’s draining/undraining
operation is made much simpler thanks to the automation and
the version control mechanism in the configuration manage-
ment design. Our method of draining a switch is as follows:
(1) FBOSS agent retrieves the drained BGP configuration data
from a central configuration database. (2) The central man-
agement system triggers the draining process via the Thrift
management interface. (3) The FBOSS agent activates the
drained config and restarts the BGP daemon with the drained
config. As for the undraining process, we repeat the above
steps, but with an undrained configuration. Then, as a final
added step, the management system pings the FBOSS agent
and queries the switch statistics to ensure that the undraining
process is successful. Draining is an example where FBOSS’s
Thrift management interface and the centrally managed con-
figuration snapshots significantly simplify an operational task.

6.3 Monitoring and Failure Handling
Traditionally, data center operators use standardized net-

work management protocols, such as SNMP [21], to collect
switch statistics, such as CPU/memory utilization, link load,
packet loss, and miscellaneous system health, from the vendor
network devices. In contrast, FBOSS allows external systems
to collect switch statistics through two different interfaces:
a Thrift management interface and Linux system logs. The
Thrift management interface serves the queries in the form
specified in the Thrift model. This interface is mainly used to
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monitor high-level switch usage and link statistics. Given that
FBOSS runs as a Linux process, we can also directly access
the system logs of the switch microserver. These logs are
specifically formatted to log the category events and failures.
This allows the management system to monitor low-level sys-
tem health and hardware failures. Given the statistics that it
collects, our monitoring system, called FbFlow [46], stores
the data to a database, either Scuba [15] or Gorilla [42], based
on the type of the data. Once the data is stored, it enables
our engineers to query and analyze the data at a high level
over a long time period. Monitoring data, and graphs such as
Figure 3, can easily be obtained by the monitoring system.

To go with the monitoring system, we also implemented an
automated failure remediation system. The main purpose of
the remediation system is to automatically detect and recover
from software or hardware failures. It also provides deeper in-
sights for human operators to ease the debugging process. The
remediation process is as follows. Once a failure is detected,
the remediation system automatically categorizes each failure
to a set of known root causes, applies remediations if needed,
and logs the details of the outage to a datastore. The auto-
matic categorization and remediation of failures allows us to
focus our debugging efforts on undiagnosed errors rather than
repeatedly debugging the same known issues. Also, the exten-
sive log helps us drive insights like isolating a rare failure to
a particular hardware revision or kernel version.

In summary, our approach has the following advantages:
Flexible Data Model. Traditionally, supporting a new type

of data to collect or modifying an existing data model requires
modifications and standardization of the network management
protocols and then time for vendors to implement the stan-
dards. In contrast, since we control the device, monitoring
data dissemination via FBOSS and the data collection mecha-
nism through the management system, we can easily define
and modify the collection specification. We explicitly define
the fine-grained counters we need and instrument the devices
to report those counters.

Improved Performance. Compared to conventional moni-
toring approaches, FBOSS has better performance as the data
transfer protocol can be customized to reduce both collection
time and network load.

Remediation with Detailed Error Logs. Our system al-
lows the engineers to focus on building remediation mecha-
nisms for unseen bugs, which consequently improves network
stability and debugging efficiency.

7 EXPERIENCES
While the experiences of operating a data center network

with custom switch software and hardware has been mostly
satisfactory, we faced outages that are previously unseen and
are unique to our development and deployment model.

7.1 Side Effect of Infrastructure Reuse
For improved efficiency, our data centers deploy a network

topology with a single ToR switch, which implies that the
ToR switches are a single point of failure for the hosts in
the rack. As a result, frequent FBOSS releases made on the
ToR switches need to be non-disruptive to ensure availability
of the services running on those hosts. To accomplish this,
we use an ASIC feature called "warm boot". Warm boot
allows FBOSS to restart without affecting the forwarding
tables within the ASIC, effectively allowing the data plane to
continue to forward traffic while the control plane is being
restarted. Although this feature is highly attractive and has
allowed us to achieve our desired release velocity, it also
greatly complicates the state management between FBOSS,
routing daemons, switch SDK and the ASIC. Thus, we share
a case where warm boot and our code reuse practices have
resulted in a major outage.

Despite the fact that we have a series of testing and moni-
toring process for new code deployments, it is inevitable for
bugs to leak into data center-wide deployments. The most dif-
ficult type of bugs to debug are the ones that appear rarely and
inconsistently. For example, our BGP daemon has a graceful
restart feature to prevent warm boots from affecting the neigh-
bor devices when BGP sessions are torn down by FBOSS
restarts or failures [38]. The graceful restart has a timeout
before declaring BGP sessions are broken, which effectively
puts a time constraint on the total time a warm boot oper-
ation can take. In one of our deployments, we found that
the Kerberos [7] library, which FBOSS and many other soft-
ware services, use to secure communication between servers,
caused outages for a small fraction of switches in our data
center. We realized that the reason for the outages is that
the library often took a long time to join the FBOSS agent
thread. Since the timing and availability constraints for other
software services are more lenient than FBOSS’s warm boot
requirements, existing monitors were not built detect such
rare performance regressions.

Takeaway: Simply reusing widely-used code, libraries or
infrastructure that are tuned for generic software services may
not work out of the box with switch software.

7.2 Side Effect of Rapid Deployment
During the first few months of our initial FBOSS deploy-

ment, we occasionally encountered unknown cascading out-
ages of multiple switches. The outage would start with a
single device and would spread to nearby devices, resulting in
very high packet loss within a cluster. Sometimes the network
would recover on its own, sometimes not. We realized that
the outages were more likely to occur if a deployment would
go awry, yet they were quite difficult to debug because we
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Figure 11: Overview of cascading outages seen by a failed ToR switch within a backup group.

had deployed a number of new changes simultaneously as it
was our initial FBOSS deployment.

We eventually noticed that the loss was usually limited to a
multiple of 16 devices. This pointed towards a configuration
in our data center called backup groups. Prior to deploying
FBOSS, the most common type of failure within our data
center was a failure of a single link leading to a black-holing
of traffic [36]. In order to handle such failures, a group (il-
lustrated on the left side of Figure 11) of ToR switches are
designated to provide backup routes if the most direct route
to a destination becomes unavailable. The backup routes are
pre-computed and statically configured for faster failover.

We experienced an outage where a failure of a ToR resulted
in a period where packets ping pong between the backup ToRs
and the aggregation switches, incorrectly assuming that the
backup routes are available. This resulted in a loop in the
backup routes. The right side of Figure 11 illustrates the
creation of path loops. The loop eventually resulted in huge
CPU spikes on all the backup switches. The main reason
for the CPU spikes was because FBOSS was not correctly
removing the failed routes from the forwarding table and was
also generating TTL expired ICMP packets for all packets
that had ping-ponged back and forth 255 times. Given that
we had not seen this behavior before, we had no control
plane policing in place and sent all packets with TTL of 0 to
the FBOSS agent. The rate the FBOSS agent could process
these packets was far lower than the rate we were receiving
the frames, so we would fall further and further behind and
starve out the BGP keep-alive and withdraw messages we
need for the network to converge. Eventually BGP peerings
would expire, but since we were already in the looping state,
it often made the matters worse and caused the starvation to
last indefinitely. We added a set of control plane fixes and the
network became stable even through multiple ToR failures.

Takeaway: A feature that works well for conventional
networks may not work well for networks deploying FBOSS.
This is a side effect of rapid deployment, as entire switch
outages are more frequently than in conventional networks.

Thus, one must be careful in adopting features that are known
to be stable in conventional networks.

7.3 Resolving Interoperability Issues
Although we developed and deployed switches that are

built in-house, we still need the switches and FBOSS to inter-
operate with different types of network devices for various rea-
sons. We share our experiences where the design of FBOSS
allowed an interoperability issue to be quickly resolved.

When configuring link aggregation between FBOSS and
a particular line of vendor devices, we discovered that flap-
ping the logical aggregate interface on the vendor device
could disable all IP operations on that interface. A cursory
inspection revealed that, while the device had expectantly
engaged in Duplicate Address Detection (DAD) [50] for the
aggregate interface’s address, it had unexpectedly detected a
duplicate address in the corresponding subnet. This behavior
was isolated to a race condition between LACP and DAD’s
probe, wherein an artifact of the hardware support for link
aggregation could cause DAD’s Neighbor Solicitation packet
to be looped back to the vendor switch. In accordance with
the DAD specification, the vendor device had interpreted the
looped back Neighbor Solicitation packet as another node
engaging in DAD for the same address, which the DAD spec-
ification mandates should cause the switch to disable IP oper-
ation on the interface on which DAD has been invoked. We
also found that interconnecting the same vendor device with
a different vendor’s switch would exhibit the same symptom.

Flapping of interfaces is a step performed by our network
operators during routine network maintenance. To ensure that
the maintenance could still be performed in a non-disruptive
manner, we modified the FBOSS agent to avoid the scenario
described above. In contrast, in response to our report of this
bug to the vendor, whose switch exhibited the same behavior
as ours, the vendor recommended the other vendors to im-
plement an extension to DAD. By having entire control over
our switch software, we were able to quickly provide what’s
necessary for our network.
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Takeaway: Interoperability issues are common in net-
works with various network devices. FBOSS allows us to
quickly diagnose and fix the problem directly, instead of wait-
ing for vendor updates or resorting to half-baked solutions.

8 DISCUSSION
Existing Switch Programming Standards. Over time,

many software standards have been proposed to open up vari-
ous aspects of the software on the switch. On the academic
side, there are decades of approaches to open various aspects
of switches, including active networking [35], FORCES [32],
PCE [26], and OpenFlow [40]. On the industry side, upstart
vendors have tried to compete with incumbents on being more
open (e.g., JunOS’s SDK access program, Arista’s SDK pro-
gram) and the incumbents have responded with their own
open initiatives (e.g., I2RS, Cisco’s OnePK). On both the
academic and industry sides, there also are numerous control
plane and management plane protocols that similarly try to
make the switch software more programmable/configurable.
Each of these attempts have their own set of trade-offs and
subset of supported hardware. Thus, one could argue that
some synthesis of these standards could be “the one perfect
API” that gives us the functionalities we want. So, why didn’t
we just use/improve upon one of these existing standards?

The problem is that these existing standards are all “top
down": they are all additional software/protocols layered on
top of the existing vendor software rather than entirely re-
placing it. That means that if ever we wanted to change the
underlying unexposed software, we would still be limited by
what our vendors would be willing to support and on their
timelines. By controlling the entire software stack “bottom
up", we can control all the possible states and code on the
switch and can expose any API anyway we want at our own
schedule. Even more importantly, we can experiment with the
APIs we expose and evolve them over time for our specific
needs, allowing us to quickly meet our production needs.

FBOSS as a Building Block for Larger Switches. While
originally developed for ToR, single-ASIC style switches,
we have adapted FBOSS as a building block to run larger,
multi-ASIC chassis switches as well. We have designed and
deployed our own chassis-based switch with removable line
cards that supports 128x100Gbps links with full bisection
connectivity. Internally, this switch is composed of eight line
cards each with their own CPU and ASIC, connected in a
logic CLOS topology to four fabric cards also with their own
CPU and ASIC.

We run an instance of FBOSS on each of the twelve (eight
line cards plus four fabric cards) CPUs and have them peer
via BGP internally to the switch, logically creating a single
high-capacity switch that runs the aggregation layers of our
data centers. While appearing to be a new hardware design,

the data plane of our switches follows closely conventional
vendor-sourced chassis architectures. The main difference is
that we do not deploy additional servers to act as supervisor
cards and instead leverage our larger data center automation
tooling and monitoring. While this design does not provide
the same single logical switch abstraction that is provided by
conventional vendor switches, it allows us to jump to larger
switch form factors with no software architectural changes.

Implicit and Circular Dependency. One subtle but impor-
tant problem we discovered when trying to run our switches
like a server was hidden and implicit circular dependencies
on the network. Specifically, all servers on our fleet run a
standard set of binaries and libraries for logging, monitoring,
and etc. By design, we wanted to run these existing software
on our switches. Unfortunately, in some cases, the software
built for the servers implicitly depended on the network and
when the FBOSS code depended on them, we created a circu-
lar dependency that prevented our network from initializing.
Worse yet, these situations would only arise during other er-
ror conditions (e.g., when a daemon crash) and were hard to
debug. In one specific case, we initially deployed the FBOSS
onto switches using the same task scheduling and monitoring
software used by other software services in our fleet, but we
found that this software required access to the production
network before it would run. As a result, we had to decouple
our code from it and write our own custom task scheduling
software to specifically manage FBOSS deployments. While
this was an easier case to debug, as each software package
evolves and is maintained independently, there is a constant
threat of well-meaning but server focused developers adding
a subtle implicit dependency on the network. Our current
solution is to continue to fortify our testing and deployment
procedures.

9 FUTURE WORK
Partitioning FBOSS Agent. FBOSS agent currently is a

single monolithic binary consisting of multiple features. Sim-
ilar to how QSFP service was separated to improve switch
reliability, we plan to further partition FBOSS agent into
smaller binaries that runs independently. For example, if state
observers exist as external processes that communicates with
FBOSS agent, any events that can overwhelms the state ob-
servers no long brings FBOSS agent down with it.

Novel Experiments. One of our main goals for FBOSS is
to allow more and faster experimentation. We are currently ex-
perimenting with custom routing protocols, stronger slow path
isolation (e.g., to deal with buggy experiments), micro-burst
detection, macro-scale traffic monitoring, big data analytic of
low-level hardware statistics to infer failure detection, and a
host of other design elements. By making FBOSS open source
and our research more public, we hope to aid researchers with
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tools and ideas to directly implement novel research ideas on
production ready software and hardware.

Programmable ASIC Support. FBOSS is designed to
easily support multiple types of ASICs simultaneously. In
fact, FBOSS successfully iterated through different versions
of ASICs without any huge design changes. With the recent
advent of programmable ASICs, we believe that it will be
useful for FBOSS to support programmable ASICs [19] and
the language to program these ASICs, such as P4 [18].

10 RELATED WORK
Existing Switch Software. There are various proprietary

switch software implementations, often referred to as “Net-
work OS”, such as Cisco NX-OS [12] or Juniper JunOS [41],
yet FBOSS is quite different from them. For example, FBOSS
allows full access to the switch Linux, giving users flexibility
to run custom processes for management or configuration.
In comparison, conventional switch software are generally
accessed through their own proprietary interfaces.

There is also various open-source switch software that
runs on Linux, such as Open Network Linux (ONL) [30],
OpenSwitch [11], Cumulus Linux [20] and Microsoft
SONiC [33]. FBOSS is probably most comparable to SONiC:
both as results of running switch software at scale to serve
ever increasing data center network needs, and with similar
architecture (hardware abstraction layer, state management
module, etc.). One major difference between SONiC and
FBOSS is that FBOSS is not a separate Linux distribution,
but using the same Linux OS and libraries in our large server
fleet. This allows us to truly reusing many best practices of
monitoring, configuring, and deploying for server software.
In general, open source communities around switch software
are starting grow, which is promising for FBOSS.

Finally, there are recent proposals to completely eliminate
switch software [31, 51] from a switch. They provide new
insights for the role of switch software and the future of data
center switch design.

Centralized Network Control. In the recent Software-
Defined Network (SDN) movement, many systems (e.g.,
[28, 34]), sometimes also referred to as “Network OS”, are
built to realize centralized network control. While we rely
on centralized configuration management and distributed
BGP daemons, FBOSS is largely orthogonal to these efforts.
By functionality, FBOSS’s is more comparable to software
switches such as Open vSwitch [44], even if the implemen-
tation and performance characteristics are quite different. In
fact, similar to how Open vSwitch uses OpenFlow, FBOSS’s
Thrift API, in theory, can interface with a central controller
to provide a more SDN-like functionality.

Large-scale Software Deployment. fbossdeploy is
influenced by other cloud scale [16] continuous integration

frameworks that support continuous canary [45]. Some no-
table examples are Chef [3], Jenkins [6], Travis CI [10] and
Ansible [1]. Contrary to other frameworks, fbossdeploy
is designed specifically for deploying switch software. It is
capable of monitoring the network to perform network spe-
cific remediations during the deployment process. In addition,
fbossdeploy can deploy the switch software in a manner
that considers the global network topology.

Network Management Systems. There are many network
management systems built to interact with vendor specific
devices. For example, HP OpenView [23] has interfaces to
control various vendors’ switches. IBM Tivoli Netcool [29]
handles various network events in real-time for efficient trou-
bleshooting and diagnosis. OpenConfig [9] recently proposed
a unified vendor-agnostic configuration interface. Instead of
using a standardized management interface, FBOSS provides
programmable APIs that can be integrated with other network
management systems that are vendor-agnostic.

11 CONCLUSION
This paper presents a retrospective on five years of develop-

ing, deploying, operating, and open sourcing switch software
built for large-scale production data centers. When building
and deploying our switch software, we departed from conven-
tional methods and adopted techniques widely used to ensure
scalability and resiliency for building and deploying general
purpose software. We built a set of modular abstractions that
allows the software to be not tied down to a specific set of
features or hardware. We built a continuous deployment sys-
tem that allows the software to be changed incrementally and
rapidly, tested automatically, and deployed incrementally and
safely. We built a custom management system that allows
for simpler configuration management, monitoring and op-
erations. Our approach has provided significant benefits that
enabled us to quickly and incrementally grow our network
size and features, while reducing software complexity.
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