
An OpenFlow Switch Element for Click∗

Yogesh Mundada†, Rob Sherwood∗, Nick Feamster†
† Georgia Tech ∗ Deutsche Telekom Inc. R&D Lab

1. Summary
Conventional network middleboxes process packets either

per-flow (e.g., forwarding tables, MPLS) or per-packet (e.g.,
DPI, IDS, firewalls). Each approach offers protocol design-
ers different levels of control. Flow-processing simplifies
“macro”-level decisions by abstracting away the packet-by-
packet details, while packet-processing exposes those de-
tails, providing “micro”-level control. Currently, due toar-
chitectural or hardware constraints, network protocols must
typically use one paradigm or the other.

We will present an OpenFlow element for Click, which
allows hybrid packet and flow processing. Such a hybrid
model could offer the best of both worlds: the flexibility of
packet-based processing, and the simplicity flow-based pro-
cessing. The talk will include motivation, a description of
the design, and a demonstration of the element in use.

The recently proposed OpenFlow protocol [1] provides a
common interface to control how packets are forwarded. Us-
ing OpenFlow, a centralized controller manipulates the flow
processing properties across the network. Click allows a re-
searchers to create customized packet processing devices by
interconnecting various elements. but the element paths tra-
versed by the packets at run time are determined statically
and cannot be changed dynamically.

To create a hybrid of the two models, we have added
an OpenFlow interface to the Click router with the
OpenFlowClick element [2]. This element allows a con-
troller to install rules to make packets traverse differentele-
ment paths. It also allows a single controller to control mul-
tiple Click routers at the same time.

This interface opens up many possibilities for new classes
of traffic-processing applications. For example, hybrid el-
ements could eliminate duplicate packets, take specific ac-
tions based on pre-determined packet-based rules, perform
exception handling and anomaly detection based on peri-
odic inspection of payloads, and generally combine decen-
tralized packet processing with centralized control. Figure 1
shows a generic use case scenario. Despite these possibil-
ities, this hybrid design also introduces several challenges,
including deciding which version of Click to use to im-
plement an OpenFlow element, modifying specific kernel
mechanisms, and abstracting various functions into the ap-
propriate classes.

2. Design and Implementation
Currently, theOpenFlowClick runs as the Click kernel

module. The secchan and dpctl utilities from OpenFlow are
used with this element without modification. Secchan es-
tablishes secure communication channel with the controller.
∗Yogesh Mundada performed this work as an intern at Deutsche Telekom.

Figure 1: An example OpenFlow+Click network.

Figure 2: OpenFlowClick Architecture

Dpctl passes commands to the element from user space. Fig-
ure 2 shows the internal architecture of this element.

Communication between the OpenFlowClick element in
kernel space and secchan in user space occurs over a netlink
interface. The control path installs packet forwarding rules
received from controller. The data path module actually
matches rules and forwards packets. Linear and hash tables
are used to store wild card and exact match rules respec-
tively. The packet buffer stores the packets awaiting decision
from the controller and a periodic timer module deletes the
timed out rules from the table.

REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation
in campus networks. 38(2):69–74, April 2008.

[2] OpenFlowClick.http://www.openflowswitch.org/wk/
index.php/OpenFlowClick, 2009.

1

http://www.openflowswitch.org/wk/index.php/OpenFlowClick
http://www.openflowswitch.org/wk/index.php/OpenFlowClick

	1 Summary
	2 Design and Implementation

