
The Controller Placement Problem

Brandon Heller
Stanford University
Stanford, CA, USA

brandonh@stanford.edu

Rob Sherwood
Big Switch Networks
Palo Alto, CA, USA

rob.sherwood@bigswitch.com

Nick McKeown
Stanford University
Stanford, CA, USA

nickm@stanford.edu

ABSTRACT
Network architectures such as Software-Defined Networks
(SDNs) move the control logic off packet processing devices
and onto external controllers. These network architectures
with decoupled control planes open many unanswered ques-
tions regarding reliability, scalability, and performance when
compared to more traditional purely distributed systems.
This paper opens the investigation by focusing on two spe-
cific questions: given a topology, how many controllers are
needed, and where should they go? To answer these ques-
tion, we examine fundamental limits to control plane propa-
gation latency on an upcoming Internet2 production deploy-
ment, then expand our scope to over 100 publicly available
WAN topologies. As expected, the answers depend on the
topology. More surprisingly, one controller location is of-
ten sufficient to meet existing reaction-time requirements
(though certainly not fault tolerance requirements).

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design; C.2.3 [Computer-
Communication Networks]: Network Operations; C.4
[Performance of Systems]: Design Studies, Performance
Attributes

General Terms
Design, Algorithms, Performance

Keywords
SDN, Software-Defined Networks, OpenFlow, Controller
Placement, Latency

1. INTRODUCTION
Historically, control plane functions in packet networks

have been tightly coupled to the data plane. That is, the
boxes that decide where and how to forward packets have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

also performed the actual packet forwarding. A more re-
cent trend is to decouple the forwarding and control planes.
While the details vary, the common change is moving the
control-plane logic to a set of dedicated control-plane-only
boxes — controllers — that each manage one or more simpli-
fied packet-forwarding boxes. This trend is highlighted by a
range of industry products and academic prototypes: BGP
Route Reflectors [2], RCP [7], MPLS Path Computation El-
ements with Label-Switched Routers [5], enterprise wireless
controllers with CAPWAP access points [3], the planes of
4D [9, 22], Ethane [8], and in Software-Defined Networks,
OpenFlow-based switches and controllers [12, 16, 18].
However, the performance characteristics of these decou-

pled architectures are largely unstudied, and the debate is
not always data-driven. Proponents claim that controller-
based architectures simplify control-plane design, improve
convergence, and yield a flexible, evolvable network; detrac-
tors raise concerns about decision latency, scalability, and
availability. To inform this debate and quantify performance
concerns, we narrow our focus to two essential questions:

(1) How many controllers are needed?
(2) Where in the topology should they go?

This design choice, the Controller Placement Problem,
influences every aspect of an SDN, from state distribution
options to fault tolerance to performance metrics. In long-
propagation-delay wide-area networks, it places fundamen-
tal limits on availability and convergence time. It has prac-
tical implications for software design, affecting whether con-
trollers can respond to events in real-time, or whether they
must push forwarding actions to forwarding elements in ad-
vance. Furthermore, controller placement has immediate
relevance: Internet2 is constructing a 34-node SDN [4] and
must place the controllers in this production network.
Our contributions are to (1) motivate the Controller

Placement Problem and (2) more importantly, quantify the
impacts of placement on real topologies. Our goal is not
to find optimal minimum-latency placements at scale – the-
orists have already done that, and we can solve it offline
anyway – but instead, to present our initial analysis of a
problem worth further study.
After motivating the problem in §2, introducing example

users in §3, and defining the metrics in §4, our analysis be-
gins in §5 with an in-depth look at controller placements
in the Internet2 OS3E topology, along with their tradeoffs.
We then quantify the impacts of controller placement in §6
for over 100 publicly available network topologies from the
Internet Topology Zoo [15]. Lastly, in §7 we summarize our
findings and describe future extensions to the analysis.

2. CONTROL PLANE DESIGN
Both traditional distributed network architectures and

SDNs have a control plane: a network for propagating
events, such as routing updates, new traffic engineering poli-
cies, or topology changes, to each packet-forwarding device
in the network. The key difference between these design is
the structure of their control-plane network. The control
topology of traditional distributed architectures like BGP,
OSPF, and IS-IS is peer-to-peer: each forwarding device
hears events from its peers and makes autonomous decisions
based on a local (and likely inconsistent) view of global state.
In contrast, the control networks in decoupled architec-

tures are closer to client-server networks. Packet-forwarding
devices (the “clients”) have limited decision-making capabil-
ities and must implement control decisions made by con-
trollers (the “servers”). A common example is a BGP route
reflector that presents each edge router with a subset of ad-
vertised prefixes, rather than propagating the full mesh of
learned routes. An more example is the relationship between
an OpenFlow switch and controller; the switch has no local
control-plane logic and relies entirely on the controller to
populate its forwarding table.1 Control networks for SDNs
may take any form, including a star (a single controller), a
hierarchy (a set of controllers connected in a full mesh, which
connect to forwarding nodes below), or even a dynamic ring
(a set of controllers in a distributed hash table [16]).
Regardless of the exact form, the layout of controllers will

affect the network’s ability to respond to network events.
Understanding where to place controllers2 and how many to
use is a prerequisite to answering performance and fault tol-
erance questions for SDNs, and hence also a prerequisite for
quantitatively comparing them to traditional architectures.
We call this design choice the Controller Placement Problem.
In this paper, we consider only wide-area networks where the
“best” controller placement minimizes propagation delays; in
a data center or in the enterprise, one might instead max-
imize fault tolerance or actively balance controllers among
administrative domains.
For WANs, the best placements depends on propagation

latency, a quantity fixed by physics and physical topology.
Propagation latency bounds the control reactions with a re-
mote controller that can be executed at reasonable speed
and stability. With enough delay, real-time tasks (like link-
layer fault recovery) become infeasible, while others may
slow down unacceptably (BGP convergence). Note that re-
gardless of the state consistency mechanisms in the control
plane implementation, these lower bounds apply.
In this paper, we compare placements using node-to-

controller latency, for the fundamental limits imposed on
reaction delay, fault discovery, and event propagation effi-
ciency. Other metrics matter, such as availability and fair-
ness of state, processing, bandwidth distribution — but our
focus is the WAN, where latency dominates. One can always
reduce the effective delay by adding autonomous intelligence
into a switch or pushing failover plans, but these may add
complexity and make network evolution harder. One goal of
this paper is to understand if, and for which networks, ex-
tensions to the “dumb, simple switch” model are warranted.

1 We ignore “bootstrap state” for the control connection.
2 We use“controllers” to refer to geographically distinct con-
troller locations, as opposed to individual servers.

3. MOTIVATING EXAMPLES
Having defined the core problem, we show three types of

SDN users and motivate why controller placement matters
to them.

Network Operators. Rob Vietzke is the architect/VP
of Engineering at Internet2, and his team has committed to
a SDN deployment of 34 nodes and about 41 edges, shown in
Figure 1. This network, the Open Science, Scholarship and
Services Exchange (OS3E) [4] needs to peer with the outside
world through BGP. Placement matters to Rob because his
network should minimize downtime and multiple controllers
are a requirement for high availability.

Controller Application Writers. Nikhil Handigol is a
grad student who created Aster*x [13], a distributed load
balancer that reactively dispatches requests to servers as
well as managing the network path taken by those requests.
Nikhil would like to demonstrate the advantages of his algo-
rithm on a service with real users, and ideally on a range of
topologies, like GENI. Placement matters to Nikhil because
he can’t get users if his service goes down or doesn’t per-
form, but at the same time he would prefer to keep things
simple with one controller. Ideally, we could provide Nikhil
with guidelines to evaluate the response-time potential of
different approaches, from centralized to distributed, before
he implements his code or does a deployment.

Network Management Software Writers. Rob Sher-
wood built FlowVisor [19], a centralized network slicing tool
that enables network access and control to be split among
multiple controllers or versions of controllers, given a control
policy. Since FlowVisor’s only consistent state is its configu-
ration, multiple instances might be used to scale FlowVisor.
Placement matters to Rob because FlowVisor sits between
controllers and switches, where its presence adds a delay to
potentially every network command; this delay should be
actively minimized, especially with multiple instances.
In each case, the SDN user must ask the question: “How

many controllers should I use, and where should they go?”
and benefits from practical methods for analyzing tradeoffs.

4. PLACEMENT METRICS
We now introduce and compare definitions of whole-

network latency, along with their corresponding optimiza-
tion problems. Each is called a facility location problem
and appears in many contexts, such as minimizing firefight-
ing response times, locating warehouses near factories, and
optimizing the locations of content distribution nodes and
proxy servers. All are NP-hard problems with an input for
k, the number of controllers to place, and all have weighted
variations where nodes have varying importance.

Average-case Latency. For a network graph G(V,E)
where edge weights represent propagation latencies, where
d(v, s) is the shortest path from node v ∈ V to s ∈ V ,
and the number of nodes n = |V |, the average propagation
latency for a placement of controllers S′ is:

Lavg(S
′) =

1

n

∑
v∈V

min
(s∈S′)

d(v, s) (1)

In the corresponding optimization problem, minimum k-
median [6], the goal is to find the placement S′ from the set
of all possible controller placements S, such that |S′| = k
and Lavg(S

′) is minimum. For an overview of the approaches
to solving this problem, along with extensions, see [20].

location in average-latency-optimized placement!

k = 1 k = 5

location in worst-case-latency-optimized placement!

Figure 1: Optimal placements for 1 and 5 controllers
in the Internet2 OS3E deployment.

Worst-case latency. An alternative metric is worst-case
latency, defined as the maximum node-to-controller propa-
gation delay:

Lwc(S
′) = max

(v∈V)
min

(s∈S′)
d(v, s) (2)

where again we seek the minimum S′ ⊆ S. The related
optimization problem is minimum k-center [21].

Nodes within a latency bound. Rather than mini-
mizing the average or worst case, we might place controllers
to maximize the number of nodes within a latency bound;
the general version of this problem on arbitrary overlap-
ping sets is called maximum cover [14]. An instance of
this problem includes a number k and a collection of sets
S = S1, S2, ..., Sm, where Si ⊆ v1, v2, ..., vn. The objective
is to find a subset S′ ⊆ S of sets, such that |

⋃
Si∈S′ Si| is

maximized and |S′| = k. Each set Si comprises all nodes
within a latency bound from a single node.
In the following sections, we compute only average and

worst-case latency, because these metrics consider the dis-
tance to every node, unlike nodes within a latency bound.
Each optimal placement shown in this paper comes from
directly measuring the metrics on all possible combinations
of controllers. This method ensures accurate results, but at
the cost of weeks of CPU time; the complexity is exponential
for k, since brute force must enumerate every combination
of controllers. To scale the analysis to larger networks or
higher k, the facility location problem literature provides
options that trade off solution time and quality, from simple
greedy strategies (pick the next vertex that best minimizes
latency, or pick the vertex farthest away from the current se-
lections) to ones that transform an instance of k-center into
other NP-complete problems like independent set, or even
ones that use branch-and-bound solvers with Integer Linear
Programming. We leave their application to future work.

5. ANALYSIS OF INTERNET2 OS3E
Having defined our metrics, we now ask a series of ques-

tions to understand the benefits of multiple controllers for
the Internet2 OS3E topology [4]. To provide some intuition
for placement considerations, Figure 1 shows optimal place-
ments for k = 1 and k = 5; the higher density of nodes in the
northeast relative to the west leads to a different optimal set
of locations for each metric. For example, to minimize av-
erage latency for k = 1, the controller should go in Chicago,
which balances the high density of east coast cities with the
lower density of cities in the west. To minimize worst-case
latency for k = 1, the controller should go in Kansas City
instead, which is closest to the geographic center of the US.

k = 5!4! 3! 2! 1! k = 5!4! 3!2! 1!

Figure 2: Latency CDFs for all possible controller
combinations for k = [1, 5]: average latency (left),
worst-case latency (right).

2 4 6 8 10 12
number of controllers (k)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

av
er

ag
e

la
te

nc
y/

op
tim

al

2 4 6 8 10 12
number of controllers (k)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

w
or

st
-c

as
e

la
te

nc
y/

op
tim

al

Figure 3: Ratio of random choice to optimal.

5.1 How does placement affect latency?
In this topology, placement quality varies widely. A few

placements are pathologically bad, most are mediocre, and
only a small percent approach optimal. Figure 2 shows this
data as cumulative distributions, covering all possible place-
ments for k = 1 to k = 5, with optimal placements at the
bottom. All graphs in this paper show one-way network dis-
tances, with average-optimized values on the left and worst-
case-optimized values on the right. If we simply choose a
placement at random for a small value of k, the average
latency is between 1.4x and 1.7x larger than that of the op-
timal placement, as seen in Figure 3. This ratio is larger
for worst-case latencies; it starts at 1.4x and increases up to
2.5x at k = 12. Spending the cycles to optimize a placement
is worthwhile.

5.2 How many controllers should we use?
It depends. Reducing the average latency to half that at

k = 1 requires three controllers, while the same reduction
for worst-case latency requires four controllers. Assuming
we optimize for one metric, potentially at the expense of the
other, where is the point of diminishing returns? Figure 4
shows the benefit-to-cost ratios for a range of controllers, de-
fined as (lat1/latk)/k. A ratio of 1.0 implies a proportional
reduction; that is, for k controllers, the latency is 1/k of

2 4 6 8 10 12
number of controllers (k)

0.0

0.2

0.4

0.6

0.8

1.0

co
st

/b
en

ef
it

ra
tio

 fo
r

op
tim

iz
ed

 a
ve

ra
ge

 la
te

nc
y

2 4 6 8 10 12
number of controllers (k)

0.0

0.2

0.4

0.6

0.8

1.0

co
st

/b
en

ef
it

ra
tio

 fo
r

op
tim

iz
ed

 w
or

st
-c

as
e

la
te

nc
y

Figure 4: Cost-benefit ratios: a value of 1.0 indicates
proportional reduction, where k controllers reduce
latency to 1

k
of the original one-controller latency.

Higher is better.

(a) All controller placements

0 200 400 600 800 1000
average latency (miles)

0

500

1000

1500

2000

w
or

st
-c

as
e

la
te

nc
y

(m
ile

s)

(b) Pareto-optimal curves (c) Normalized pareto-optimal curves

Figure 5: Placement tradeoffs for k = 1 to k = 5; (b) shows the best placements from (a), while (c) normalizes
the curves in (b). We see up to a 17% increase in the un-optimized metric.

the single-controller latency. For this topology, each metric
stays below 1.0 and shows diminishing returns that level off
around 3-4 controllers. Independently, Internet2 operators
suggested a (3 + 1)-controller setup as a reasonable starting
point and expressed interest in having three controllers plus
one for fault tolerance.

5.3 What are the tradeoffs?
One must choose between optimizing for worst-case la-

tency or average-case latency. In the OS3E topology, for
each input value of k, the optimal placement for each met-
ric comprises a different set of nodes. In some cases, these
sets overlap; Figure 1 shows one example, where the choices
for k = 5 overlap at three locations.
The point cloud in Figure 5(a) shows both latency metrics

for all combinations of up to five controllers. We only care
about the optimal points in the lower-left region; Figure
5(b) zooms into this region and shows only those points
that are on the pareto frontier. Informally, each point on
this curve represents either the optimal for one metric, or
some mix between the two. To more easily quantify the
tradeoffs, Figure 5(c) normalizes the pareto frontiers, where
1.0 represents the optimal metric value for the given k for
that axis. Now we can directly evaluate the tradeoff that
may be required when choosing one metric over another,
which is up to a 17% larger worst-case latency when we
optimize for average latency.

6. ANALYSIS OF MORE TOPOLOGIES
Do the trends and tradeoffs seen for Internet2 apply to

other topologies, and what aspects of a topology affect those
trends and tradeoffs? In this section, we expand our analysis
to hundreds of topologies in the Internet Topology Zoo, a
collection of annotated network graphs derived from public
network maps [15]. We employ this data set because it cov-
ers a diverse range of geographic areas (regional, continental,
and global), network sizes (8 to 200 nodes), and topologies
(line, ring, hub-and-spoke, tree, and mesh). The graphs in
the Zoo do not conform to any single model, which demands
a more careful analysis - but in many cases the outliers shed
light on why some classes of topologies require more con-
trollers to achieve the same latency reductions.
We include in our analysis most of the 256 topologies in

the Zoo. To avoid bias towards maps with multiple versions
available, we use the most recent one. A number of network
maps, including all those with n ≥ 100, have ambiguous lo-

1 2 3 4 5 6 7 8
number of controllers (k)

101

102

103

104

av
er

ag
e

la
te

nc
y

(m
ile

s)

10-1

100

101

102

av
er

ag
e

la
te

nc
y

(m
s)

switch processing

ring protection

mesh restoration

1 2 3 4 5 6 7 8
number of controllers (k)

101

102

103

104

w
or

st
-c

as
e

la
te

nc
y

(m
ile

s)

10-1

100

101

102

w
or

st
-c

as
e

la
te

nc
y

(m
s)

switch processing

ring protection

mesh restoration

Figure 6: Optimal latencies (log-scaled).

cations or edges; we ignore these. We also remove the small
fraction of nodes in a few topologies that are disconnected
from the rest of the graph.

6.1 Is one controller enough?
Surprisingly, one controller location often suffices. We

first look in Figure 6 at raw latencies for optimal place-
ments, in miles and milliseconds. Each line represents one
topology. Immediately, we are reminded of the variety of
topology scales, from regional to global, yet most lines show
the same steady downward trend. The thick bundle of lines
corresponds to the US- and Europe-sized topologies that
make up much of the Topology Zoo.
To get a sense for the magnitude of these fundamental

propagation delays, we compare them to bounds relevant
to today’s networks, such as expected recovery times and
delays expected within a forwarding device.3 The lowest
3Scaled by half to align w/one-way latency numbers.

1 2 3 4 5 6 7 8
number of controllers (k)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

av
er

ag
e

la
te

nc
y/

op
tim

al

1 2 3 4 5 6 7 8
number of controllers (k)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

w
or

st
-c

as
e

la
te

nc
y/

op
tim

al

Figure 7: Random-to-optimal ratios.

horizontal line is switch processing: 10 milliseconds roughly
corresponds to the measured delay of today’s commercial
hardware-based OpenFlow switches, from the time a packet
is sent, to the time a response is received, through an un-
loaded controller directly attached to the switch. Ring pro-
tection: 50 milliseconds is the target restoration time of
a SONET ring, covering the time from fault detection to
when traffic is flowing in the opposite direction along the
ring. This is a common target, as it prevents circuits from
requiring re-establishment, such as those on a voice call.
Shared-mesh restoration: around 200 to 250 milliseconds is
the point at which voice calls start to drop, or ATM circuit
rerouting may be triggered [1].
We make no claims that responding to events at these

timescales will actually lead to human-perceptible disrup-
tion, or whether they still apply. However, they do provide
a back-of-the-envelope way to evaluate whether the funda-
mental latency increases from greater control plane central-
ization prevent equivalent failure response when compared
to today’s networks.

Round-trip Latency Target Safety Margin
Name Delay 1.0x 1.5x 2.0x
switch processing 10 ms 27% 22% 18%
ring protection 50 ms 82% 60% 33%
mesh restoration 200 ms 100% 91% 89%

Table 1: Percent of topologies with worst-case
round-trip latencies below the target, for one con-
troller, which frequently suffices.

Table 1 summarizes the one-controller results, reporting
the fraction of topologies for which every control path meets
a specified latency bound. This table also considers differ-
ent safety margins, to help account for forwarding device
and controller overheads, as well as processing variability.
In 82% of topologies, a single location presents no funda-
mental limit to meeting SONET ring protection targets. If
we use a safety margin of 1.5, leaving half as much time for
other overheads and variation as for propagation, 60% of
topologies meet the deadline. Availability concerns will al-
ways apply, and placing controllers in different locations pro-
vides major fault tolerance benefits. However, for many net-
works, multiple controllers are not strictly necessary to meet
response-time goals, even with “dumb, simple switches”.

6.2 How does placement affect latency?
Random placement is far from optimal, and not just in

OS3E. Figure 7 shows a factor of two difference between
most random and optimal placements. In almost all topolo-
gies, this ratio increases with larger numbers of controllers,
and for smaller topologies, it increases relatively faster, due

1 2 3 4 5 6 7 8
number of controllers (k)

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

la
te

nc
y

re
la

tiv
e

to
 v

al
ue

 a
t k

 =
 1

proportional
reduction

1 2 3 4 5 6 7 8
number of controllers (k)

0.0

0.2

0.4

0.6

0.8

1.0

w
or

st
-c

as
e

la
te

nc
y

re
la

tiv
e

to
 v

al
ue

 a
t k

 =
 1

proportional
reduction

Figure 8: Normalized optimal latencies.

to each controller location having a relatively larger effect.
The ratio is also larger (and grows faster) when optimizing
for the worst case instead of the average; this is to be ex-
pected, since optimizing for the average discounts the effect
of the farthest-away nodes.
We do, however, see some high outliers on these graphs,

where a random choice might yield a solution with five times
worse latency than an optimal one. The top three for both
optimization metrics, for which random does poorly, are
Highwinds, HurricaneElectric and Xeex. Each of these is
a medium-size topology (n = 18 to 24) that covers at least
three continents; random placements are likely to put the
controllers on the same continent, explaining the increase.
The low outliers when optimizing for average are Bics and
Geant2010, both larger (n = 33 to 37) mesh topologies in
Europe. These topologies have a highly-connected region in
the center, and random placement is likely to put controllers
there. For worst-case optimization, the numbers are more
variable and no single topology maintains a low ratio.

6.3 How quickly does latency reduce?
For most topologies, adding controllers yields slightly less

than proportional reduction. That is, k controllers reduce la-
tency nearly to 1

k
of the baseline latency with one controller.

This was not a given; going from one controller could yield
even more than a factor-of-two reduction. Consider the ex-
ample of a topology with nodes split evenly between two
distant islands. The initial choice doesn’t matter; either
way, the average latency will be half the distance between
the islands. However, going to two controllers, one placed
on each island, the average and worst case latencies drop
significantly.
Figure 8 shows normalized latency reductions, with a line

marking proportional reduction (1
2
for k = 2, 1

3
for k = 3,

and so on). The second controller generally drops the la-
tency by slightly less than a factor of two, and the third
controller generally drops the latency by a bit less than
a factor of three. The lowest lines, where each controller
provides a larger-than-proportional benefit, correspond to
smaller topologies with n < 30. Above the proportional
line, the slope of the normalized latency reduction curves
is more gradual, indicating a smaller benefit. Looking at
data not shown due to space constraints, we find that larger
topologies generally require more controllers to see the same
fractional reduction in latency. A simple rule like “k con-
trollers ought to be enough for anybody” does not apply.
Two of the three highest outliers are again Bics and

Geant2010. For topologies like these, where most nodes are
together in one cluster and random placements are quite
good, adding controllers provides less of a benefit. With
Geant2010, a full seven controllers are required just to drop
the latency by a factor of two, both for average and worst-

no tradeoff for 25%
of topologies!

90% of topologies!
show ≤ 50% tradeoff!

no tradeoff for 30%!
of topologies!

90% of topologies!
show ≤ 30% tradeoff!

Figure 9: Tradeoffs when optimizing for one param-
eter instead of another.

case. The other high outlier is Itnet, a hub-and-spoke topol-
ogy; once the hub is covered, the incremental latency re-
duction from covering a spoke is small. Low outliers, where
the second controller provides a better-than-2 reduction, are
all topologies covering multiple islands, either real (Xeex,
RedIris) or effective (Arpanet1972: east and west coasts of
US).

6.4 What are the tradeoffs?
In three-quarters of topologies, we must trade off one met-

ric for another. When looking at all topologies, we see a
range of tradeoffs in the choice of one latency metric over
another, as shown in Figure 9. In at least a quarter of topolo-
gies, one solution optimizes both metrics, with no tradeoff.
When optimizing for average latency, 90% of the time, the
worst-case is within 50% of optimal; when optimizing for
worst-case latency, 90% of the time, the average latency is
within about 30% of optimal. In the other 10%, we see ma-
jor outliers, including cases where the un-optimized metric
is twice the optimal value. Outside of k = 1 showing smaller
tradeoffs for average-case, we see no k-dependent patterns.

7. DISCUSSION AND CONCLUSION
In this paper, we showed that the answer to where and

how many controllers to deploy depends on desired reaction
bounds, metric choice(s), and the network topology itself.
Most networks show diminishing returns from each added
controller, along with tradeoffs between metrics. Surpris-
ingly, in many medium-size networks, the latency from ev-
ery node to a single controller can meet the response-time
goals of existing technologies, such as SONET ring protec-
tion (§6.1). Natural extensions for this analysis include:

Availability: Accepted wisdom dictates that distributed
control planes are more resilient to failures than SDNs,
but issues of route flapping [17], BGP “wedgies” [10], and
protracted route convergence times [11] undermine this
belief. On the other hand, SDNs exchange these con-
cerns for other failure modes such as controller failure or
disconnection. One could place controllers to maximize
fault tolerance; or, one could minimize the distance to
the nth-closest controller, called the α-neighbor k-centers
problem, which considers up to n− 1 controller failures.

State Distribution: SDNs potentially enable state-
oriented methods such as Distributed Hash Tables and
Paxos to replace more traditional message-oriented
approaches in wide-area network control planes [16].
One could place controllers not for latency bounds, but
to optimize for full event-to-response delays, given a
controller communication model.

Controller Selection: Decoupling the data and control
planes opens the question of how to maintain a map of
forwarding devices to controllers. One could place con-
trollers to minimize latency, as a starting point, then
use another algorithm to (possibly dynamically) balance
switches among available controllers.

We believe that this exploration of the Controller Place-
ment Problem provides useful guidance for SDN operators
and application designers. However, there appear to be no
placement rules that apply to every network. Whenever an
operator wants to add controllers, they should use the meth-
ods shown in this paper to determine their own best con-
troller placement; full code to generate and analyze place-
ments is available at github.com/brandonheller/cpp.git.

8. ACKNOWLEDGMENTS
This work was supported by an HP Fellowship.

9. REFERENCES
[1] Ansi t1.tr.68-2001 enhanced network survivability performance.
[2] BGP Route Reflection: An Alternative to Full Mesh Internal

BGP (IBGP). http://tools.ietf.org/html/rfc4456.
[3] Control And Provisioning of Wireless Access Points (CAPWAP)

Protocol Specification. http://tools.ietf.org/html/rfc5415.
[4] Internet2 open science, scholarship and services exchange.

http://www.internet2.edu/network/ose/.
[5] Path Computation Clients (PCC) - Path Computation Element

(PCE) Requirements for Point-to-Multipoint MPLS-TE.
http://tools.ietf.org/html/rfc5862.

[6] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala,
and V. Pandit. Local search heuristics for k-median and facility
location problems. SIAM Journal on Computing,
33(3):544–562, 2004.

[7] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and J. van der Merwe. Design and implementation of a routing
control platform. In NSDI. USENIX, 2005.

[8] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. ACM
SIGCOMM CCR, 37(4):1–12, 2007.

[9] A. Greenberg, G. Hjalmtysson, and et al. A clean slate 4D
approach to network control and management. ACM
SIGCOMM CCR, 35(5):54, 2005.

[10] T. Griffin and G. Huston. BGP Wedgies. RFC 4264
(Informational), Nov. 2005.

[11] T. G. Griffin and G. Wilfong. An analysis of bgp convergence
properties. SIGCOMM CCR., 29:277–288, August 1999.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, and
N. McKeown. Nox: Towards an operating system for networks.
In ACM SIGCOMM CCR, July 2008.

[13] N. Handigol, S. Seetharaman, M. Flajslik, R. Johari, and
N. McKeown. Aster*x: Load-balancing as a network primitive.
9th GENI Engineering Conference (Plenary), November 2010.

[14] D. Hochba. Approximation algorithms for np-hard problems.
ACM SIGACT News, 28(2):40–52, 1997.

[15] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The internet topology zoo.

[16] T. Koponen, M. Casado, and et al. Onix: A distributed control
platform for large-scale production networks. In OSDI.
USENIX, 2010.

[17] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route
flap damping exacerbates internet routing convergence.
SIGCOMM CCR, 32:221–233, August 2002.

[18] The openflow switch. http://www.openflowswitch.org.
[19] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,

N. McKeown, and G. Parulkar. Can the Production Network
Be the Testbed? In OSDI. USENIX, 2010.

[20] M. Shindler. Approximation algorithms for the metric k-median
problem. Written Qualifying Exam Paper, University of
California, Los Angeles. Cited on, page 44.

[21] V. Vazirani. Approximation algorithms. Springer Verlag, 2001.
[22] H. Yan, D. Maltz, T. Ng, H. Gogineni, H. Zhang, and Z. Cai.

Tesseract: A 4d network control plane. In NSDI. USENIX,
2007.

http://tools.ietf.org/html/rfc4456
http://tools.ietf.org/html/rfc5415
http://www.internet2.edu/network/ose/
http://tools.ietf.org/html/rfc5862
http://www.openflowswitch.org

	Introduction
	Control Plane Design
	Motivating Examples
	Placement Metrics
	Analysis of Internet2 OS3E
	How does placement affect latency?
	How many controllers should we use?
	What are the tradeoffs?

	Analysis of More Topologies
	Is one controller enough?
	How does placement affect latency?
	How quickly does latency reduce?
	What are the tradeoffs?

	Discussion and Conclusion
	Acknowledgments
	References

