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Motivation: Two Ways of Processing Traffic

• Process as an individual packet

• Advantages: Flexible, More control, Micro-decisions

• Disadvantages: Slow

• Process as an aggregate flow

• Advantages: Faster, Macro-decisions

• Disadvantages: Not enough control and flexibility

• Flowlets: Process packets on per-packet and per-

flow granularity

• Best of both worlds!
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Example: Network Security 

(Flow-Based Only)
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Example: Network Security 

(Packet-Based Only, Distributed)
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Example: Network Security 

(Packet-Based Only, Centralized)
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Better Solution: Both Packets and Flows
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Neither Flow nor Packet-Based Processing is 

Sufficient

Examples Speed Caching “Macro”

Decisions

“Micro”

Decisions

Control/
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We need both !!
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Main Idea: Combine Packet and Flow 

Processing

Packet Based Processing
• Flexible

• Control

• Micro-decisions 

Flow Based Processing
• Fast
• Caching

• Macro-decisions 

Flowlets
• Hybrid model

• Flexibility and Control
• Caching

• Switch between modes

• Expressive power 
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Talk Outline

• Motivation

• Example: Enterprise Security

• Flowlets: Hybrid Processing

• Background

 OpenFlow

 Click

• OpenFlow Click Element

• Demonstration

• Implementation Details and Decisions

• Future work and Summary
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Flow-Based Processing: OpenFlow

OpenFlow Switch

Flow

Table

Secure

Channel

secchan
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PC

•Add/delete flow entry

• Encapsulated packets

• Controller discovery
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Packet-Based Processing: Click

• Easy to program

• Intuitive configuration language

• Provides more control

• Large elements library
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Hybrid: OpenFlow Click Element

OpenFlow rules can control the 

output port for each flow 

OpenFlow

Click

Element

Click

Element

Click

Element

Click

Element

Click

Element

Click

Element

Click

Element

Rule 1 Action

Rule 2 Action

… Action

Rule N Action

OpenFlow

Controller

OpenFlow 

Protocol



13 13

Example: Enterprise Security
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Enterprise Security with Flowlet Processing
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Demonstration
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Demonstration
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Demo Click Configuration

q1 :: Queue;

q2 :: Queue;

q3 :: Queue;

s :: Ofswitch;

FromDevice(eth8,  PROMISC true) -> [0]s;

FromDevice(eth10, PROMISC true) -> [1]s;

FromDevice(veth0, PROMISC true) -> [2]s;

s[0] -> Print("Received from eth8", MAXLENGTH 100) -> q1;

s[1] -> Print("Received from eth10", MAXLENGTH 100) -> q2;

s[2] -> Print("Received from veth0", MAXLENGTH 100) -> q3 -> 

DelayShaper(2) -> b::Burster(0.1) -> q2;

q1 -> ToDevice(eth8);

q2 -> ToDevice(eth10);
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Implementation Decisions

1. Implement new Click element using existing 

OpenFlow switch source code.

2. Implement element as kernel module.

3. Minimize changes to existing OpenFlow code 

base.



19 19

Element Architecture
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Other Applications of Flowlets

• Loop detection: TTL zero

• Inserting/Deleting extra bits from packet headers 

(Splicing)

• Packet sampling

• Duplicate packet detection
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Future work

• User-space element

• Click vendor-specific action

• Dynamic port addition/deletion

• Dynamic element load/unload

• Dynamic sub-graph load/unload
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Summary

http://www.openflowswitch.org/wk/index.php/OpenFlowClick

Flowlets
• Hybrid model

• Flexibility with control
• Caching

• Switch between modes

• Expressive power 
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Challenges

• Locking

• Refactoring code in correct modules

• Memory allocation

• Multi-threaded code

• Debugging

• Mixing C/C++ code


