Hybrid Packet and Flow Processing with Flowlets

Yogesh Mundada, Rob Sherwood, Nick Feamster yhm@cc.gatech.edu, rob.sherwood@stanford.edu, feamster@cc.gatech.edu

Motivation: Two Ways of Processing Traffic

- Process as an individual packet
 - Advantages: Flexible, More control, Micro-decisions
 - Disadvantages: Slow
- Process as an aggregate flow
 - Advantages: Faster, Macro-decisions
 - Disadvantages: Not enough control and flexibility
- Flowlets: Process packets on per-packet and perflow granularity
 - Best of both worlds!

Example: Network Security (Flow-Based Only)

Example: Network Security (Packet-Based Only, Distributed)

Example: Network Security (Packet-Based Only, Centralized)

Better Solution: Both Packets and Flows

Neither Flow nor Packet-Based Processing is Sufficient

	Examples	Speed	Caching	"Macro" Decisions	"Micro" Decisions	Control/ Flexibility
Flow-based processing	MPLS, Forwarding tables, Openflow					
Packet- based processing	Active Networks, DPI, Click	×	X			

We need both !!

Main Idea: Combine Packet and Flow Processing

- Fast
- Caching
- Macro-decisions

Packet Based Processing

- Flexible
- Control
- Micro-decisions

Flowlets

- Hybrid model
- Flexibility and Control
- Caching
- Switch between modes
- Expressive power

Talk Outline

- Motivation
- Example: Enterprise Security
- Flowlets: Hybrid Processing
- Background
 - > OpenFlow
 - Click
- OpenFlow Click Element
- Demonstration
- Implementation Details and Decisions
- Future work and Summary

Flow-Based Processing: OpenFlow

Packet-Based Processing: Click

- Easy to program
- Intuitive configuration language
- Provides more control
- Large elements library

of Technology

Hybrid: OpenFlow Click Element

Example: Enterprise Security

Enterprise Security with Flowlet Processing

Demonstration

Demo Click Configuration

- q1 :: Queue;
- q2 :: Queue;
- q3 :: Queue;

s :: Ofswitch;

```
FromDevice(eth8, PROMISC true) -> [0]s;
FromDevice(eth10, PROMISC true) -> [1]s;
FromDevice(veth0, PROMISC true) -> [2]s;
```

```
s[0] -> Print("Received from eth8", MAXLENGTH 100) -> q1;
s[1] -> Print("Received from eth10", MAXLENGTH 100) -> q2;
s[2] -> Print("Received from veth0", MAXLENGTH 100) -> q3 ->
```

```
DelayShaper(2) -> b::Burster(0.1) -> q2;
```

```
q1 -> ToDevice(eth8);
q2 -> ToDevice(eth10);
```

Implementation Decisions

1. Implement new Click element using existing OpenFlow switch source code.

2. Implement element as kernel module.

3. Minimize changes to existing OpenFlow code base.

Element Architecture

Other Applications of Flowlets

- Loop detection: TTL zero
- Inserting/Deleting extra bits from packet headers (Splicing)
- Packet sampling
- Duplicate packet detection

Future work

- User-space element
- Click vendor-specific action
- Dynamic port addition/deletion
- Dynamic element load/unload
- Dynamic sub-graph load/unload

Summary

http://www.openflowswitch.org/wk/index.php/OpenFlowClick

Challenges

- Locking
- Refactoring code in correct modules
- Memory allocation
- Multi-threaded code
- Debugging
- Mixing C/C++ code