
1 1

Hybrid Packet and Flow

Processing with Flowlets

Yogesh Mundada, Rob Sherwood, Nick Feamster
yhm@cc.gatech.edu, rob.sherwood@stanford.edu, feamster@cc.gatech.edu

2 2

Motivation: Two Ways of Processing Traffic

• Process as an individual packet

• Advantages: Flexible, More control, Micro-decisions

• Disadvantages: Slow

• Process as an aggregate flow

• Advantages: Faster, Macro-decisions

• Disadvantages: Not enough control and flexibility

• Flowlets: Process packets on per-packet and per-

flow granularity

• Best of both worlds!

3 3

Example: Network Security

(Flow-Based Only)

Normal traffic

Malicious traffic

Suspicious

traffic

1. Routers forward

traffic using only

packet header

fields

2. Identify malicious

traffic by

examining packet

data at line speed

Ingress

Point

Ingress

Point

Ingress

Point
Enterprise

Network

4 4

Example: Network Security

(Packet-Based Only, Distributed)

Ingress

Point

Ingress

Point

Ingress

Point
Enterprise

Network

1. Deploy DPI

boxes at each

Ingress point

Disadvantages

1. Distributed

coordinated

attacks

2. Space,

Maintenance,

Cost, Power

Normal traffic

Malicious traffic

Suspicious

traffic

DPI

DPI

DPI

5 5

Example: Network Security

(Packet-Based Only, Centralized)

Ingress

Point

Ingress

Point

Ingress

Point
Enterprise

Network
Normal traffic

Malicious traffic

Suspicious

traffic

1. Redirect traffic

through a

centralized DPI

Advantages

1. Distributed attacks

are detected

2. Less cost, power,

maintenance

Disadvantages

1. Not scalable

2. Single point of

failure

DPI

6 6

Better Solution: Both Packets and Flows

Ingress

Point

Ingress

Point

Ingress

Point

Enterprise

Network
Normal traffic

Malicious traffic

Suspicious

traffic

1. Redirect only

suspicious traffic

to the centralized

DPI box.

Desired Properties

• Distributed

monitoring

• Centralized

decision making

• Packet by packet

and Flow based

processing

DPI

7 7

Neither Flow nor Packet-Based Processing is

Sufficient

Examples Speed Caching “Macro”

Decisions

“Micro”

Decisions

Control/

Flexibility

Flow-based

processing

MPLS,

Forwarding

tables,

Openflow

Packet-

based

processing

Active

Networks,

DPI, Click

We need both !!

8 8

Main Idea: Combine Packet and Flow

Processing

Packet Based Processing
• Flexible

• Control

• Micro-decisions

Flow Based Processing
• Fast
• Caching

• Macro-decisions

Flowlets
• Hybrid model

• Flexibility and Control
• Caching

• Switch between modes

• Expressive power

9 9

Talk Outline

• Motivation

• Example: Enterprise Security

• Flowlets: Hybrid Processing

• Background

 OpenFlow

 Click

• OpenFlow Click Element

• Demonstration

• Implementation Details and Decisions

• Future work and Summary

10 10

Flow-Based Processing: OpenFlow

OpenFlow Switch

Flow

Table

Secure

Channel

secchan

hw

sw
Controller

PC

•Add/delete flow entry

• Encapsulated packets

• Controller discovery

11 11

Packet-Based Processing: Click

• Easy to program

• Intuitive configuration language

• Provides more control

• Large elements library

Queue

Element

From

Device

To

Device
Queue

Element

Classifier

Element

Tag

Strip
To

Device

Discard

12 12

Hybrid: OpenFlow Click Element

OpenFlow rules can control the

output port for each flow

OpenFlow

Click

Element

Click

Element

Click

Element

Click

Element

Click

Element

Click

Element

Click

Element

Rule 1 Action

Rule 2 Action

… Action

Rule N Action

OpenFlow

Controller

OpenFlow

Protocol

13 13

Example: Enterprise Security

Nox Controller

dpctl secchan
User Space

Kernel Space

eth0
From

Device
Flowlets

OpenFlow

Element

Queue
eth1

From

Device

Queue
To

Device
eth0

eth1
To

Device

Worm

Detector

14 14

Enterprise Security with Flowlet Processing

Ingress

Point

Ingress

Point

Ingress

Point

Enterprise

Network
Normal traffic

Malicious traffic

Suspicious

traffic

1. Redirect only

suspicious traffic

to the centralized

DPI box.

Desired Properties

• Distributed

monitoring

• Centralized

decision making

• Packet by packet

processing

• Flow based

processing

Nox

Controller

15 15

Demonstration

Click

With
OpenFlow

Element

NOX

Controller

E

T

H

10

E

T

H

8

Node 5Node 0

16 16

Demonstration

Nox Controller

dpctl secchan
User Space

Kernel Space

eth8
From

Device

Flowlets

OpenFlow

Element

Queue

eth10
From

Device

Queue
To

Device
eth8

eth10
To

Device

veth0
From

Device
Delay

Shaper
Burster

17 17

Demo Click Configuration

q1 :: Queue;

q2 :: Queue;

q3 :: Queue;

s :: Ofswitch;

FromDevice(eth8, PROMISC true) -> [0]s;

FromDevice(eth10, PROMISC true) -> [1]s;

FromDevice(veth0, PROMISC true) -> [2]s;

s[0] -> Print("Received from eth8", MAXLENGTH 100) -> q1;

s[1] -> Print("Received from eth10", MAXLENGTH 100) -> q2;

s[2] -> Print("Received from veth0", MAXLENGTH 100) -> q3 ->

DelayShaper(2) -> b::Burster(0.1) -> q2;

q1 -> ToDevice(eth8);

q2 -> ToDevice(eth10);

18 18

Implementation Decisions

1. Implement new Click element using existing

OpenFlow switch source code.

2. Implement element as kernel module.

3. Minimize changes to existing OpenFlow code

base.

19 19

Element Architecture

Communication

Module

Openflow

messages

Control

Module

Forwarding

Engine

Openflow

Message Parser

Flow Tables

(Hash and

Linear)

Packet

Storage Temporary

packets

Timer

(Stale Entries)

Purge

Entries

Consult

rules

Packets to

controller

Commands

from

Controller

Install

Rules

Nox Controller

Packets in & out

20 20

Other Applications of Flowlets

• Loop detection: TTL zero

• Inserting/Deleting extra bits from packet headers

(Splicing)

• Packet sampling

• Duplicate packet detection

21 21

Future work

• User-space element

• Click vendor-specific action

• Dynamic port addition/deletion

• Dynamic element load/unload

• Dynamic sub-graph load/unload

22 22

Summary

http://www.openflowswitch.org/wk/index.php/OpenFlowClick

Flowlets
• Hybrid model

• Flexibility with control
• Caching

• Switch between modes

• Expressive power

23 23

24 24

Challenges

• Locking

• Refactoring code in correct modules

• Memory allocation

• Multi-threaded code

• Debugging

• Mixing C/C++ code

