

OpenFlow: What is it and Where is it going?

Rob Sherwood NANOG 53

big switch

Talk Outline

- Background and Problem
- What is OpenFlow?
- Use Cases
- Standardization:
 - Open Networking Foundation (ONF)
 - Interoperability
- Deployments and Adoption

BACKGROUND AND PROBLEM

Many People's Ideas in This Talk

- OpenFlow is a much larger movement
 - Scott Shenkar, Nick McKeown, Guru Parulkar
 - Martin Cassado, Guido Appenzeller
 - Jean Tourrilhes, Dan Pitt
 - Many more in the ONF WGs

About Me:

- Three years working "in the trenches" on OpenFlow
- Currently at OpenFlow startup, Big Switch Networks
- Wearing my "OpenFlow Evangelist" hat

Don't All of Our Problems Have Solutions?

Problem	Optical	L2	L3
Virtualization	WDM	Vlans, QinQ	NAT, MPLS, VRF
Load balancing	proprietary	TRILL, LAG, VM placement	MPLS-TE, ECMP, BGP prepending
Reservations	Manual provisioning	Vlan pcp, FCoE flow control	DiffServ, MPLS AutoBandwidth
More problems	Litany of RFCs	More standards	Alphabet soup

but what is the solution to the solutions?

Complexity is the Problem

- A new solution for each problem doesn't scale
 - We've had 20+ years of problems + solutions
 - Probably can't handle another 20 more years
- Complexity compounds:
 - Feature * Layer interaction = more headaches
- Complexity costs \$\$\$
 - Longer to qualify/deploy new features
 - Longer to debug problems

How Do We Reduce Complexity?

- Find better abstractions
 - Make individual config changes less complex
 - Stop solving the same problems at different layers
 - Extract commonality among similar solutions

- Reduce # of management "touch points"
 - Make config changes in fewer places
 - You pay \$\$\$ for multi-chassis systems for a reason
 - Decouple control from forwarding

What Can We Abstract?

Exact Same Process for:

WHAT IS OPENFLOW?

OpenFlow is an Abstraction and API

OpenFlow Controller Route Engine OpenFlow Over the Protocol Network Line Card OpenFlow Datapath Line Card Line Card Flow Table Line Card

OpenFlow in Practice

OpenFlow in Practice

- Controller is independent from datapath
 - E.g., on an external server, blade, etc.
- Datapath = existing box + OpenFlow firmware
 - Requires vendor to ship OpenFlow firmware
- Communication over network to datapaths
 - Use TLS/SSL for mutual authentication
 - Out-of-band management network simpler
 - In-band schemes exist
- Open Standard
 - Could write your own controller! (IF inclined...)
 - Growing open source controller ecosystem

OpenFlow API Highlights

- 1. Punt packets up to controller
- 2. Send packets down to datapath
- 3. Add/Del/Mod forwarding entries in datapath
 - Capabilities of forwarding table next slide
- 4. Query stats
 - 1. Interface counters
 - 2. Flow counters
 - 3. Forwarding table usage

Flow Table Abstraction

OpenFlow Datapath Flow Table

Priority	Match	Action List
500	TCP.dst=22	TTL, Fwd:port 3
200	IP.dst= 128.8/16	Queue: 4
100	*	DROP

Flow Table Abstraction

- Simplifies cross-layer and feature interaction
 - Switching: match L2.dst, forward out port
 - Routing: match L3.dst, dec TTL, forward port
 - NAC: match ACL, DROP
- Multiple tables for more complex features
 - VRF, PseudoWire, Policy routing
- Match on most packet fields: L1, L2, L3, L4
- Lots of action types: Vlan, Mpls, IP, QoS, etc.

Decouple Control from Forwarding

OpenFlow does not imply centralized control!

Allows load balancing and failover

New Network Design Questions

- Traditional networks assume one-to-one forwarding to control plane mapping
 - Is this right for everyone?
- How many controllers do I need?
 - Balance between touchpoints and control traffic load
 - How many backup controllers? Hierarchy?
- Where do I put controllers?
 - Controllers per: POP, region, continent?
- Similar questions to BGP Route Reflectors
- Likely no "one-size-fits-all" solution

Protocol Between Controllers?

- By design, not specified by OpenFlow
 - Controller is software: evolve independently
 - Likely no "one-size-fits-all" solution
- OpenFlow: building block to a larger solution
- Depends on each network's requirements
 - Failure recovery time
 - Management network
 - Number of forwarding nodes

Bigger Picture: Software Defined Networking

OpenFlow is just the same as XXX!

- 'XXX' = LISP, MPLS-TE, policy routing, etc.
- Broad answer:
 - OpenFlow is a very-low level abstraction/API
 - Could probably implement XXX using OpenFlow
 - Could not implement OpenFlow using XXX
- If XXX meets my needs, why use OpenFlow?
 - More holistic network view
 - Reduced complexity from feature interaction

More Information

- www.openflow.org
 - Public specifications and white papers
 - On-line tutorials
- http://openflow.stanford.edu
 - FlowVisor: OpenFlow hypervisor tool (mine :-)
 - Beacon: Open Source Java-based Controller
 - Mininet: OpenFlow network emulator in a box
- http://noxrepo.org
 - Open Source C++/Python Controller

OPENFLOW USE CASES

Use Cases Outline

- OpenFlow is an enabler the sky is the limit
- To spark your imagination, this talk:
 - Cherry-picked use cases for the NANOG crowd
 - Emphasis on service provider networks
 - Demonstrations from Stanford University
- Online:
 - Lots more use cases, demos, and videos
 - http://openflow.org/videos

Virtualized Control Plane

WAN VM Migration

Moved a VM from Stanford to Japan without changing its IP.

VM hosted a video game server with active network connections.

- - Demonstrate what flexibility of routing enables in mobile networks
 - Show how technology agnostic handover can be easily achieved
 - Customized network services for applications, devices and technologies
 - Simplify control and services
 - Unified control for wireline and wireless networking equipments
 - Demonstration: n-casting
 - Reroute flows between WiFi and WiMAX without additional logic
 - n-casting provided over for video streaming where application handles duplication well
 - coded in 227 lines of C/C++

Reducing Energy in Data Center Networks

- Shuts off links and switches to reduce data center power
- Choice of optimizers to balance power, fault tolerance, and BW
- OpenFlow provides network routes and port statistics

- The demo:
- Hardware-based 16-node
 Fat Tree
- Your choice of traffic pattern, bandwidth, optimization strategy
- Graph shows live power and latency variation

demo credits: Brandon Heller, Srini Seetharaman, Yiannis Yiakoumis, David Underhill

STANDARDIZATION

Open Networking Foundation

- ONF now maintains OpenFlow
 - Plus related protocols
 - Stanford not setup to be a standards body
- Composed of "Promoters" and "Adopters"
- Cross-license all IPR, royalty free
- Non-profit industry consortium [501(c)(6)]
- Founded March 22, 2011
 - NY Times + other press releases

ONF Organization

ONF Board Compostion

8 Board members/6 "promoter" member companies

- ·Urs Hölzle (Sr. VP, Engineering, Google), chairman, president
- Jonathan Heiliger (VP, Technical Operations, Facebook), secretary
- •Adam Bechtel (VP, Infrastructure Group, Yahoo)
- Stuart Elby (VP, Network Architecture, Verizon)
- ·Arne Josefsberg (GM, Windows Azure Infrastructure, Microsoft)
- Bruno Orth (VP, Strategy and Architecture, Deutsche Telekom)
- Nick McKeown (Professor, EE and CS, Stanford)
- Scott Shenker (Professor, EECS, UC Berkeley and ICSI)

36 "Adopter" Member Companies

- Big Switch Networks
- Broadcom
- Brocade
- Ciena
- Cisco
- Citrix
- Comcast
- CompTIA
- Dell

- Ericsson
- Extreme Networks
- Force10 Networks
- Fujitsu
- HP
- Huawei
- IBM
- Infoblox
- Intel
- IP Infusion
- Ixia
- Juniper Networks
- Marvell
- Mellanox
- Metaswitch Networks
- Midokura
- NEC
- Netgear

- Netronome
- Nicira Networks
- Nokia Siemens
 Networks
- NTT
- Plexxi Inc.
- Pronto Systems
- Riverbed Technology
- Vello Systems
- VMware

OpenFlow Interop-fest at Interop

- Interop: 13,000 attendees, 350 vendors
- 30' x 40' OpenFlow "Interop Labs" booth
- 14 vendors with OpenFlow datapaths
 - Various stages of prototype
 - Few commercial products
- Inter-operated under a single FlowVisor
 - ... for the most part, eventually

INTEROPLABS

Rack 1 (controller): Big Switch Controller

Rack 2 (switches):

Brocade IBM (Blade) Dell

Quanta (Pronto)

Broadcom (Reference)

Netgear Extreme

HP Procurve Juniper (MX240,480)

Rack 3/4 (switches):

Citrix (OVS)

Fulcrum (Reference)

NEC

Upstairs:

Marvell (Reference)

OpenFlow Demos @ Interop

- NEC (Programmable Flow Demo)
 - Winner of "The Best of Interop 2011"
 - Category: infrastructure
- HP: Per-flow QoS demo
- Pronto: OpenFlow-enabled switches:
 - 48 X10GE, 48X10GE+4X40GE, 16X40GE 1U models
- Brocade Service provider group
- Big Switch Networks: big virtual switch controller demo
- Juniper Networks: bandwidth calendar application
- ... plus standard Stanford demos

OPENFLOW DEPLOYMENTS

Deployment Overview

- Most public deployments are R&E Networks
 - OpenFlow did start in the R&E community
- Many interesting private deployments
 - Details are scarce and non-public
 - Best bet is to talk to ONF member operators

70+ World-wide Public Deployments

NSF GENI: 9+ Sites

Planned: 34 POPs in Internet2

OFELIA - Aim and Partners.

Federation of five islands

- 5 OpenFlow-enabed islands at academic institutions:
 - Berlin (TUB) partial replacement of existing campus network with OF-switches
 - Ghent (IBBT) central hub, large-scale emulation wall
 - Zürich (ETH) connection to OneLab and GpENI
 - Barcelona (i2CAT) experience with facility projects (laaS, FEDERICA)
 - Essex (UEssex) national hub for UK optical community; L2 (Extreme) switches, FPGA testbed
- NEC provides homogeneous L2 hardware platform (OFenabled Ethernet switches)
- ADVA as major vendor of optical access and data center equipment
- Different external vendors (HP, Extreme, Juniper)

Partners with complementary technological strengths and user groups from five countries with strong research communities in networking.

partner	12	L1/optics	13	Wireless	emulation	Control SW	processing	US connections	MM source
iBBT	Х				Х		Χ		X
TUB	Х			Х					
I2cat	Х		Х			Χ			
UEssex	Х	Х				Χ	Χ		Х
ETH	Х							Х	

10/11/11

Conslusion

- Networking needs better abstractions to reduce complexity
- OpenFlow is an abstraction and API
 - Time will tell if it is the right answer
 - ... but is probably asking the right questions
- Lots of use cases for operator community
- It's on it's way to wide-spread adoption
 - Newly formed ONF
 - More deployments than I can count

http://www.openflow.org

Thanks you!