A Crash Course in OpenFlow 1.1

Rob Sherwood
August 2011
rob.sherwood@bigswitch.com
Talk Summary

• Background and Assumptions
 • “OpenFlow 1.1 is for WANs”
• Delta between 1.0 and 1.1
 • New features, clarifications, spec changes
• Adoption (or lack thereof)
• Known issues
 • Next steps towards OpenFlow 1.2+
Background

- Assumes: familiar with OpenFlow 1.0
- OpenFlow 1.0 was developed for campus networks, e.g., GENI with slicing
- OpenFlow 1.1 was targeted at WANs
 - Took over a year to specify
 - Driven by a small but influential group
- Backwards compatibility was **NOT** a goal
Target Use Cases

- Better flow table usage
 - \(n \) routes \(\times \) \(m \) policies == too many flow_mods
- Fast failover (faster than controller latency)
- Multi-path forwarding, e.g., ECMP
- Support for new match types
- Litany of smaller features/concerns
- Large audience requires better overall spec clarity
OpenFlow 1.0 to 1.1

- This talk divides the differences into:
 - Complex new features
 - Simple new features
 - Various sundry changes
 - Spec clarifications
 - What was not added (... and why)
Complex New Features: Summary

• Multiple tables
 • Instructions vs. actions sets

• Group table
 • Action buckets

• Match is now an extensible TLV (sort of)
Multiple Tables: Goals

- ASICs have multi-stage processing pipelines
- OF1.0 abstracts this all away to one table
- As a result, most firmware implementations only a small subset of hardware, e.g., TCAM
- Goal: better expose underlying hardware
- Give programmer more precise control
- Solve: Cartesian product of flow entries
Multi-Table: Challenges

• Need a simple model to describe all ASICs
• Diverse capabilities
 • # pipeline stages
 • state between stage, legal transitions
 • support resubmit? (for tunnel decap)
• Feature negotiation is pathological
 • intra-ASIC loops; depends on actions
Multi-Table: Solution

- Switch exposes n tables
 - n could equal one!
- Incomplete online negotiation: too hard!
 - Assumes controller writer has OOB info
 - Switch can always say “unsupported”
- Per-table “miss” and match capabilities
- Introduce instructions and action set
Multi-Table: Instructions

• Instructions: goto-table \texttt{n}, record metadata, change action \texttt{set}, apply current actions set to packet

• Instructions affect processing pipeline, state

• actions only affect the packet (as in 1.0)

• Actions are now a \texttt{set}, not a list

• only one action of each type is allowed per packet -- closer to ASIC capabilities

• use group table (next) to send multi-port
Multi-Table: Packet Flow

- **Packet In**
 - Start at table 0

- **Match in table n?**
 - Yes → **Update counters**
 - Execute instructions:
 - update action set
 - update packet/match set fields
 - update metadata
 - No → Based on table configuration, do one:
 - send to controller
 - drop
 - continue to next table

- **Goto-Table n?**
 - Yes → **Execute action set**
 - No → Based on table configuration, do one:
 - send to controller
 - drop
 - continue to next table

Figure 3 from OF1.1 spec
Group Tables

• Short story: actions indirection layer
 • Added a “send to group XXX” action
• Each group is a list of action buckets
• Action bucket: a list of actions or groups
• Can create chains of action buckets
 • e.g., ECMP across links with fast failover
 • ...or even action bucket loops (!!)
Group Table: Example Uses

- **Type all**: execute all buckets in list
 - e.g., multi-cast groups, Spanning Tree port lists

- **Type select**: execute a single bucket, chosen by “switch computed selection algorithm”
 - e.g., a hash on packet 5-tuple for ECMP

- **Type fast-failover**: execute first live bucket
 - as managed by the switch via, e.g., BFD

- Selection algorithm, liveness criteria configured out-of-band
ofp_match is now a TLV

- Allows adopters to define new match fields
 - e.g., IPv6, FiberChannel, etc.
- Type=0 is a OF1.0-like fixed-length block
 - added support for MPLS, metadata, etc.
- No other types defined
 - But: can’t mix official+non-standard types
 - and assert()’s in openflow.h are wrong
- Likely addressed in OF1.2: e.g., NXM proposal
Simple New Features

- Maskable ethernet src/dst addresses
 - e.g., for PortLand-like addressing schemes
- MPLS support: match + push/pop/swap/ttl
- VLAN QinQ support
 - Can only match outer tag
- IP TTL decrement + ECN actions added
- Maskable cookies
Litany of Other Changes

- Port IDs are now 32-bit fields
- NO_FLOOD bit can’t be controlled (!!)
- VLAN actions rewritten: push/pop/swap
- s/VENDOR/EXPERIMENTER/g
- Lots of constants renamed, reordered
- Many messages re-factored
 - e.g., flow_mod takes a list of instructions
Spec Clarifications

- Explicit packet processing model (next)
- (Partial) definition of hybrid switch
- OFPC_MODIFY vs. OFPC_ADD
 - modify is no longer an implicit add
- SSL/TLS control channel optional
 - better match to de facto use
Figure 4:
How to map a packet to an ofp_match:

Main point: lots of overloaded fields to work around inflexible match.
Figure 4: How to map a packet to an ofp_match:

Main point: lots of overloaded fields to work around inflexible match.

Big source of contention for 1.2+: duplicates and contradicts existing standards.
Not Added to OFI.1

- Tunneling: use virtual ports instead
 - configure out-of-band
- Configuration protocol
 - active debate in ONF working group
- Per-flow rate limiter action
 - personal pet peeve - hardware support exists!
 - really useful for OFPP_CONTROLLER
Adoption

• OF reference switch did not implement 1.1
 • code too complex to be a reference, too slow to be deployable
• Ericsson just released OF1.1 reference (yay!)
• No OVS support (not even planned?)
• OFPS: implemented all features but group table
 • Python-based switch by Dan Talayco and myself
• EZChip NPU has an 1.1 implementation
 • AFAIK, only public “hardware”-based 1.1 switch
Known Issues (1/2)

• Full multi-tables unimplementable on existing hardware
• Most tables have limited capabilities
 • e.g., L2-only table
• Big increase to controller complexity
• ...don’t even get me started on FlowVisor
• “Extensible” part of match unspecified
• still no IPv6! planned fix in OF1.2
Known Issues (2/2)

• No controller support for 1.1
 • openflow.jar would need a rewrite
 • “hacked” nox support from Ericsson

• Still very ethernet-centric
 • No way to describe MPLS or IP-only box

• Too many things punted to OOB configuration protocol
Conclusions

- OpenFlow 1.1 solves real issues from 1.0
 - Efficient table use, ECMP, fast-failover
 - MPLS-support, VLAN QinQ
- Not (yet?) adopted for a variety of reasons
 - reasons still being debated...
- OF1.2 will hopefully address some issues